
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/140621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging of the Ciliary Cholesterol Underlying the Sonic Hedgehog Signal Transduction. Methods in Molecular Biology, 2022, 2374, 49-57.	0.4	1
2	iPSC reprogramming-mediated aneuploidy correction in autosomal trisomy syndromes. PLoS ONE, 2022, 17, e0264965.	1.1	4
3	NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Scientific Reports, 2021, 11, 19661.	1.6	3
4	Premature aging syndrome showing random chromosome number instabilities with CDC20 mutation. Aging Cell, 2020, 19, e13251.	3.0	10
5	A novel CDK-independent function of p27Kip1 in preciliary vesicle trafficking during ciliogenesis. Biochemical and Biophysical Research Communications, 2020, 527, 716-722.	1.0	3
6	Applications of Genome Editing Technology in Research on Chromosome Aneuploidy Disorders. Cells, 2020, 9, 239.	1.8	5
7	Insufficiency of ciliary cholesterol in hereditary Zellweger syndrome. EMBO Journal, 2020, 39, e103499.	3.5	35
8	Induction of somatic mutations by low-dose X-rays: the challenge in recognizing radiation-induced events. Journal of Radiation Research, 2018, 59, ii11-ii17.	0.8	10
9	Exploration of genetic basis underlying individual differences in radiosensitivity within human populations using genome editing technology. Journal of Radiation Research, 2018, 59, ii75-ii82.	0.8	11
10	Updated summary of genome editing technology in human cultured cells linked to human genetics studies. Journal of Human Genetics, 2018, 63, 133-143.	1.1	6
11	Albatross/FBF1 contributes to both centriole duplication and centrosome separation. Genes To Cells, 2018, 23, 1023-1042.	0.5	6
12	PLK1-mediated phosphorylation of WDR62/MCPH2 ensures proper mitotic spindle orientation. Human Molecular Genetics, 2017, 26, 4429-4440.	1.4	32
13	Evaluation of ATM heterozygous mutations underlying individual differences in radiosensitivity using genome editing in human cultured cells. Scientific Reports, 2017, 7, 5996.	1.6	18
14	Wilms tumor accompanied by premature chromatid separation. Pediatric Blood and Cancer, 2017, 64, e26255.	0.8	0
15	The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation. Cell Reports, 2015, 10, 664-673.	2.9	128
16	YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature, 2015, 521, 217-221.	13.7	237
17	Ciliopathy in PCS (MVA) syndrome. Oncotarget, 2015, 6, 24582-24583.	0.8	1
18	TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of <i>BUB1B</i> as causative of PCS (MVA) syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1461-1466.	3.3	52

#	Article	IF	CITATIONS
19	Exome sequencing reveals a novel MRE11 mutation in a patient with progressive myoclonic ataxia. Journal of the Neurological Sciences, 2014, 337, 219-223.	0.3	16
20	Efficient <scp>TALEN</scp> construction and evaluation methods for human cell and animal applications. Genes To Cells, 2013, 18, 315-326.	0.5	190
21	Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Scientific Reports, 2013, 3, 3379.	1.6	195
22	Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10915-10920.	3.3	40
23	Nucleolin Participates in DNA Double-Strand Break-Induced Damage Response through MDC1-Dependent Pathway. PLoS ONE, 2012, 7, e49245.	1.1	63
24	NBS1 Recruits RAD18 via a RAD6-like Domain and Regulates Pol ÎDependent Translesion DNA Synthesis. Molecular Cell, 2011, 43, 788-797.	4.5	55
25	Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly. DNA Repair, 2011, 10, 314-321.	1.3	49
26	Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Human Molecular Genetics, 2011, 20, 2058-2070.	1.4	52
27	WRN participates in translesion synthesis pathway through interaction with NBS1. Mechanisms of Ageing and Development, 2010, 131, 436-444.	2.2	26
28	Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 2010, 465, 223-226.	13.7	1,097
29	Sporadic neonatal Fanconi's anemia with VACTERL association. Pediatrics International, 2010, 52, 141-142.	0.2	3
30	HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development. Mechanisms of Development, 2010, 127, 235-245.	1.7	33
31	BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells. Oncogene, 2009, 28, 2806-2820.	2.6	47
32	Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1. Biochemical and Biophysical Research Communications, 2009, 380, 752-757.	1.0	27
33	Combined BubR1 protein downâ€regulation and <i>RASSF1A</i> hypermethylation in Wilms tumors with diverse cytogenetic changes. Molecular Carcinogenesis, 2008, 47, 660-666.	1.3	16
34	NBS1 regulates a novel apoptotic pathway through Bax activation. DNA Repair, 2008, 7, 1705-1716.	1.3	25
35	NBS1 Prevents Chromatid-Type Aberrations through ATM-Dependent Interactions with SMC1. Radiation Research, 2008, 170, 345-352.	0.7	8
36	Absence of <i>Ku70</i> Gene Obliterates X-Ray-Induced <i>lacZ</i> Mutagenesis of Small Deletions in Mouse Tissues. Radiation Research, 2008, 170, 216-223.	0.7	9

#	Article	IF	CITATIONS
37	TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochemical and Biophysical Research Communications, 2007, 362, 872-879.	1.0	48
38	NBS1 and MRE11 associate for responses to DNA double-strand breaks. International Congress Series, 2007, 1299, 158-163.	0.2	1
39	Homologous recombination repair is regulated by domains at the N- and C-terminus of NBS1 and is dissociated with ATM functions. Oncogene, 2007, 26, 6002-6009.	2.6	58
40	Cytoplasmic, but not nuclear, p16 expression may signal poor prognosis in high-grade astrocytomas. Journal of Neuro-Oncology, 2006, 77, 273-277.	1.4	31
41	MonoallelicBUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. American Journal of Medical Genetics, Part A, 2006, 140A, 358-367.	0.7	144
42	R352Q mutation of the DHCR7 gene is common among Japanese Smith–Lemli–Opitz syndrome patients. Journal of Human Genetics, 2005, 50, 353-356.	1.1	16
43	The Nijmegen breakage syndrome gene and its role in genome stability. Chromosoma, 2004, 113, 53-61.	1.0	24
44	Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Advances in Biophysics, 2004, 38, 65-80.	0.6	49
45	NBS1 and its functional role in the DNA damage response. DNA Repair, 2004, 3, 855-861.	1.3	163
46	Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Advances in Biophysics, 2004, 38, 65-80.	0.6	16
47	Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Advances in Biophysics, 2004, 38, 65-80.	0.6	1
48	p16 gene transfer increases cell killing with abnormal nucleation after ionising radiation in glioma cells. British Journal of Cancer, 2003, 89, 1802-1811.	2.9	15
49	Studies of Mutagenesis Caused by Low Dose Rate Tritium Radiation Using a Novel Hyper-Sensitive Detection System. Fusion Science and Technology, 2002, 41, 413-416.	0.6	10
50	NBS1 Localizes to Î ³ -H2AX Foci through Interaction with the FHA/BRCT Domain. Current Biology, 2002, 12, 1846-1851.	1.8	272
51	Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene, 2002, 21, 8967-8980.	2.6	177
52	Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature, 2002, 420, 93-98.	13.7	263
53	Combined immunodeficiency, chromosomal instability, and postnatal growth deficiency in a Japanese girl. American Journal of Medical Genetics Part A, 2001, 100, 9-12.	2.4	9
54	The Forkhead-associated Domain of NBS1 Is Essential for Nuclear Foci Formation after Irradiation but Not Essential for hRAD50·hMRE11·NBS1 Complex DNA Repair Activity. Journal of Biological Chemistry, 2001, 276, 12-15.	1.6	131

#	Article	IF	CITATIONS
55	Japanese family with an autosomal dominant chromosome instability syndrome: A new neurodegenerative disease?. American Journal of Medical Genetics Part A, 2000, 94, 265-270.	2.4	8
56	Chromosomal Instability Syndrome of Total Premature Chromatid Separation with Mosaic Variegated Aneuploidy Is Defective in Mitotic-Spindle Checkpoint. American Journal of Human Genetics, 2000, 67, 483-486.	2.6	80
57	Cell Cycle and LET Dependence for Radiation-induced Mutation. A Possible Mechanism for Reversed Dose-rate Effect Journal of Radiation Research, 1999, 40, 45-52.	0.8	9
58	Neutron Generator (HIRRAC) and Dosimetry Study Journal of Radiation Research, 1999, 40, 14-20.	0.8	9
59	Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene, 1999, 18, 3422-3426.	2.6	120
60	Four novel mutations of the Fanconi anemia group A gene (FAA) in Japanese patients. Journal of Human Genetics, 1999, 44, 48-51.	1.1	14
61	A polymorphic CA repeat marker at the human 27-kD calbindin (CALB1) locus. Journal of Human Genetics, 1999, 44, 414-415.	1.1	1
62	Sequence Analysis of an 800-kb Genomic DNA Region on Chromosome 8q21 That Contains the Nijmegen Breakage Syndrome Gene,NBS1. Genomics, 1999, 55, 242-247.	1.3	17
63	Expression of Full-Length NBS1 Protein Restores Normal Radiation Responses in Cells from Nijmegen Breakage Syndrome Patients. Biochemical and Biophysical Research Communications, 1999, 265, 716-721.	1.0	36
64	Positional cloning of the gene for Nijmegen breakage syndrome. Nature Genetics, 1998, 19, 179-181.	9.4	302
65	Genetic Mapping Using Microcell-Mediated Chromosome Transfer Suggests a Locus for Nijmegen Breakage Syndrome at Chromosome 8q21-24. American Journal of Human Genetics, 1997, 60, 1487-1494.	2.6	62
66	Inhibitory action of (â^')-epigallocatechin gallate on radiation-induced mouse oncogenic transformation. Cancer Letters, 1997, 112, 135-139.	3.2	17