Bin Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406073/publications.pdf

Version: 2024-02-01

471061 552369 42 767 17 26 citations h-index g-index papers 1190 42 42 42 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Photocatalytic Degradation of Aqueous 4-Chlorophenol by Silica-Immobilized Polyoxometalates. Environmental Science & Environme	4.6	116
2	Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids. Materials, 2015, 8, 1545-1567.	1.3	78
3	Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring. Materials, 2014, 7, 2340-2355.	1.3	59
4	Morphology-Dependent Catalytic Activity of Ru/CeO2 in Dry Reforming of Methane. Molecules, 2019, 24, 526.	1.7	38
5	Tuning Metal–Support Interactions on Ni/Al2O3 Catalysts to Improve Catalytic Activity and Stability for Dry Reforming of Methane. Processes, 2021, 9, 706.	1.3	38
6	Three POM-based coordination polymers: hydrothermal synthesis, characterization, and catalytic activity in epoxidation of styrene. CrystEngComm, 2011, 13, 7143.	1.3	30
7	Effect of Brønsted/Lewis Acid Ratio on Conversion of Sugars to 5â€Hydroxymethylfurfural over Mesoporous Nb and Nbâ€W Oxides. Chinese Journal of Chemistry, 2017, 35, 1529-1539.	2.6	26
8	Study of Oxygen Vacancies on Different Facets of Anatase TiO ₂ . Chinese Journal of Chemistry, 2019, 37, 922-928.	2.6	22
9	Synthesis and characterization of noble-metal-substituted Dawson-type polyoxometalates. Transition Metal Chemistry, 1997, 22, 321-325.	0.7	20
10	Synthesis and Characterization of V-HMS Employed for Catalytic Hydroxylation of Benzene. Catalysis Letters, 2009, 131, 458-462.	1.4	20
11	Promotional effect of cerium on nickel-containing mesoporous silica for carbon dioxide reforming of methane. Science China Chemistry, 2015, 58, 148-155.	4.2	20
12	Direct hydroxylation of benzene to phenol using H ₂ O ₂ as an oxidant over vanadium-containing nitrogen doped mesoporous carbon catalysts. RSC Advances, 2016, 6, 87656-87664.	1.7	20
13	Simultaneous Characterization of Solid Acidity and Basicity of Metal Oxide Catalysts via the Solid-State NMR Technique. Journal of Physical Chemistry C, 2018, 122, 24094-24102.	1.5	20
14	Preparation and Characterization of Keggin Type Polyoxotungstates Containing Palladium or Iridium. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1997, 27, 551-566.	1.8	19
15	Reforming of CH ₄ with CO ₂ over Rh/Hâ€Beta: Effect of Rhodium Dispersion on the Catalytic Activity and Coke Resistance. Chinese Journal of Chemistry, 2010, 28, 1864-1870.	2.6	17
16	Crystalline three-dimensional cubic mesoporous niobium oxide. CrystEngComm, 2010, 12, 344-347.	1.3	17
17	Formation of palladium concave nanocrystals via auto-catalytic tip overgrowth by interplay of reduction kinetics, concentration gradient and surface diffusion. Nanoscale, 2016, 8, 8673-8680.	2.8	17
18	Self-assembly of Mesoporous Ni–P Nanosphere Catalyst with Uniform Size and Enhanced Catalytic Activity in Nitrobenzene Hydrogenation. Topics in Catalysis, 2012, 55, 1022-1031.	1.3	16

#	Article	IF	Citations
19	Direct synthesis of hierarchically porous TSâ€1 through a solventâ€evaporation route and its application as an oxidation catalyst. Applied Organometallic Chemistry, 2014, 28, 239-243.	1.7	14
20	Mixedâ€Addenda Lindqvistâ€Type Polyoxoanion [V ₂ W ₄ O ₁₉] ^{4–} â€Supported Copper Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 472-477.	0.6	13
21	Construction of g-C3N4-mNb2O5 Composites with Enhanced Visible Light Photocatalytic Activity. Nanomaterials, 2018, 8, 427.	1.9	13
22	Controllable preparation and structures of two zinc phosphonocarboxylate frameworks with MER and RHO zeolitic topologies. CrystEngComm, 2013, 15, 7056.	1.3	12
23	Stabilisation of high-valent Cu ³⁺ in a Keggin-type polyoxometalate. Chemical Communications, 2020, 56, 2324-2327.	2.2	11
24	Cerium promoted V-g-C ₃ N ₄ as highly efficient heterogeneous catalysts for the direct benzene hydroxylation. Royal Society Open Science, 2018, 5, 180371.	1.1	10
25	Preparation and Characterization of Divanadium Pentoxide Nanowires inside SBAâ€15 Channels. Chinese Journal of Chemistry, 2004, 22, 33-37.	2.6	9
26	Three Polymeric Polyoxometalate Compounds Based on Twisted Polyâ€Keggin Chains. European Journal of Inorganic Chemistry, 2013, 2013, 1821-1826.	1.0	8
27	Preparation of free-standing mesoporous metal catalysts and their applications in heterogeneous enantioselective hydrogenations. Catalysis Science and Technology, 2015, 5, 638-649.	2.1	8
28	Effect of Calcination Temperature on Structure and Properties of Sn–Nb2O5/α-Al2O3 Catalyst for Ethylene Oxide Hydration. Catalysis Letters, 2008, 124, 85-90.	1.4	7
29	Reforming of CH4 with CO2 over Co/Mg–Al oxide catalyst. Chinese Chemical Letters, 2013, 24, 777-779.	4.8	7
30	An aluminum promoted cesium salt of 12-tungstophosphoric acid: a catalyst for butane isomerization. Catalysis Science and Technology, 2013, 3, 2113.	2.1	7
31	Four organic–inorganic compounds based on polyoxometalates: crystal structures and catalytic epoxidation of styrene. Journal of Coordination Chemistry, 2014, 67, 506-521.	0.8	7
32	The Effects of Exposed Specific Facets and Sulfation on the Surface Acidity of Cu 2 O Solids. Chemistry - A European Journal, 2019, 25, 14771-14774.	1.7	7
33	A study on the acidity of sulfated CuO layers grown by surface reconstruction of Cu ₂ 0 with specific exposed facets. Catalysis Science and Technology, 2020, 10, 3985-3993.	2.1	7
34	Determination of acid structures on the surface of sulfated monoclinic and tetragonal zirconia through experimental and theoretical approaches. Catalysis Science and Technology, 2022, 12, 596-605.	2.1	7
35	Effect of Adsorbed Water Molecules on the Surface Acidity of Niobium and Tantalum Oxides Studied by MAS NMR. Journal of Physical Chemistry C, 2021, 125, 9330-9341.	1.5	5
36	Honeycomb nanoscale-porous material constructed from copper complexes and mixed-addenda Lindqvist-type polyoxoanions. CrystEngComm, 2010, 12, 3522.	1.3	4

#	Article	lF	CITATIONS
37	Synthesis, Structure, and Properties of Two Supramolecular Compounds Based on Silicotungstic Acid and Transition Metal(II) Coordinated Isonicotinic Acid. Chinese Journal of Chemistry, 2012, 30, 759-764.	2.6	4
38	Synthesis of Cs _{2.5} H _{0.5} PW ₁₂ O ₄₀ /TiO ₂ Nanocomposites with Dominant TiO ₂ {001} Facets and Related Photocatalytic Properties. Chinese Journal of Chemistry, 2014, 32, 1151-1156.	2.6	4
39	Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction. Chemical Research in Chinese Universities, 2022, 38, 1032-1040.	1.3	4
40	H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization. Materials, 2020, 13, 507.	1.3	4
41	Three Polyoxometalate-Based Coordination Polymers Constructed from the Same Dimetallic Cyclic Building Block. European Journal of Inorganic Chemistry, 2015, 2015, 488-493.	1.0	2
42	Inside Cover: Effect of Brønsted/Lewis Acid Ratio on Conversion of Sugars to 5-Hydroxymethylfurfural over Mesoporous Nb and Nb-W Oxides (Chin. J. Chem. 10/2017). Chinese Journal of Chemistry, 2017, 35, 1480-1480.	2.6	0