Vivek K Mutalik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1405572/publications.pdf Version: 2024-02-01

VIVER K MUTALIK

#	Article	IF	CITATIONS
1	A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. IScience, 2022, 25, 104121.	4.1	12
2	Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. ISME Journal, 2021, 15, 2289-2305.	9.8	27
3	The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. Microbiology (United Kingdom), 2021, 167, .	1.8	20
4	High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biology, 2020, 18, e3000877.	5.6	91
5	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
6	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
7	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
8	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
9	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
10	High-throughput mapping of the phage resistance landscape in E. coli. , 2020, 18, e3000877.		0
11	Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nature Communications, 2019, 10, 308.	12.8	33
12	Jungle Express is a versatile repressor system for tight transcriptional control. Nature Communications, 2018, 9, 3617.	12.8	33
13	Rapid and Efficient One-Step Metabolic Pathway Integration in <i>E.Âcoli</i> . ACS Synthetic Biology, 2016, 5, 561-568.	3.8	143
14	Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli. PLoS ONE, 2016, 11, e0151087.	2.5	26
15	Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits. ACS Synthetic Biology, 2015, 4, 1244-1253.	3.8	22
16	PR-PR: Cross-Platform Laboratory Automation System. ACS Synthetic Biology, 2014, 3, 515-524.	3.8	41
17	Composability of regulatory sequences controlling transcription and translation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14024-14029.	7.1	377
18	Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 2013, 10, 354-360.	19.0	653

VIVEK K MUTALIK

#	Article	IF	CITATIONS
19	Quantitative estimation of activity and quality for collections of functional genetic elements. Nature Methods, 2013, 10, 347-353.	19.0	183
20	Tuning Promoter Strengths for Improved Synthesis and Function of Electron Conduits in <i>Escherichia coli</i> . ACS Synthetic Biology, 2013, 2, 150-159.	3.8	83
21	Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 2013, 41, 5139-5148.	14.5	155
22	Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 2012, 40, 5775-5786.	14.5	87
23	Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Research, 2012, 40, 2907-2924.	14.5	66
24	An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 2012, 9, 1088-1094.	19.0	67
25	Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 2012, 8, 447-454.	8.0	157
26	Toward rational design of bacterial genomes. Current Opinion in Microbiology, 2011, 14, 624-630.	5.1	34
27	Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the United States of America, 2011, 108, 8617-8622.	7.1	277
28	Predicting strength and function for promoters of the <i>Escherichia coli</i> alternative sigma factor, <i>if</i> ^E . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2854-2859.	7.1	99
29	Promoter Strength Properties of the Complete Sigma E Regulon of <i>Escherichia coli</i> and <i>Salmonella enterica</i> . Journal of Bacteriology, 2009, 191, 7279-7287.	2.2	64
30	A theoretical steady state analysis indicates that induction of Escherichia coli glnALG operon can display all-or-none behavior. BioSystems, 2007, 90, 1-19.	2.0	7
31	Effect of the MAPK cascade structure, nuclear translocation and regulation of transcription factors on gene expression. BioSystems, 2006, 85, 144-157.	2.0	8
32	Insights into transcriptional regulation and competition from an equilibrium model of RNA polymerase binding to DNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5332-5337.	7.1	159
33	Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs. Theoretical Biology and Medical Modelling, 2005, 2, 19.	2.1	13
34	Corrigendum to: Robust global sensitivity in multiple enzyme cascade system explains how the downstream cascade structure may remain unaffected by cross-talk (FEBS 28047) [FEBS Letters 558 (2004) 79-84]. FEBS Letters, 2005, 579, 292-293.	2.8	0
35	Equilibrium Analysis of Allosteric Interactions Shows Zero-Order Effects. Cell Biochemistry and Biophysics, 2004, 41, 179-192.	1.8	1
36	A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theoretical Biology and Medical Modelling, 2004, 1, 2.	2.1	34

#	Article	IF	CITATIONS
37	Robust global sensitivity in multiple enzyme cascade system explains how the downstream cascade structure may remain unaffected by cross-talk. FEBS Letters, 2004, 558, 79-84.	2.8	15
38	Allosteric Interactions and Bifunctionality Make the Response of Glutamine Synthetase Cascade System of Escherichia coli Robust and Ultrasensitive. Journal of Biological Chemistry, 2003, 278, 26327-26332.	3.4	29