Samuel K Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/140546/publications.pdf

Version: 2024-02-01

			109321		58581
85		8,010	35		82
papers		citations	h-index		g-index
	. '			. '	
89		89	89		9142
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The biophysical principles underpinning muco-trapping functions of antibodies. Human Vaccines and Immunotherapeutics, 2022, 18, 1-10.	3.3	9
2	A PBPK model recapitulates early kinetics of anti-PEG antibody-mediated clearance of PEG-liposomes. Journal of Controlled Release, 2022, 343, 518-527.	9.9	5
3	Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. Journal of Controlled Release, 2022, 343, 303-313.	9.9	11
4	Modeling insights into SARS-CoV-2 respiratory tract infections prior to immune protection. Biophysical Journal, 2022, 121, 1619-1631.	0.5	17
5	Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. Journal of Controlled Release, 2021, 329, 774-781.	9.9	20
6	Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. Journal of Controlled Release, 2021, 329, 87-95.	9.9	21
7	Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Advanced Drug Delivery Reviews, 2021, 169, 100-117.	13.7	63
8	Engineering sperm-binding IgG antibodies for the development of an effective nonhormonal female contraception. Science Translational Medicine, 2021, 13, .	12.4	4
9	Bispecific binder redirected lentiviral vector enables in vivo engineering of CAR-T cells. , 2021, 9, e002737.		20
10	Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 Vaccine in a Patient With Clinically Confirmed PEG Allergy. Frontiers in Allergy, 2021, 2, 715844.	2.8	38
11	High MW polyethylene glycol prolongs circulation of pegloticase in mice with anti-PEG antibodies. Journal of Controlled Release, 2021, 338, 804-812.	9.9	8
12	Experimental Data and PBPK Modeling Quantify Antibody Interference in PEGylated Drug Carrier Delivery. Bulletin of Mathematical Biology, 2021, 83, 123.	1.9	2
13	Hexavalent sperm-binding IgG antibody released from vaginal film for development of potent on-demand nonhormonal female contraception. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
14	Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers. Communications Chemistry, 2020, 3, .	4.5	40
15	Engineering tetravalent IgGs with enhanced agglutination potencies for trapping vigorously motile sperm in mucin matrix. Acta Biomaterialia, 2020, 117, 226-234.	8.3	4
16	Engineering monoclonal antibody-based contraception and multipurpose prevention technologiesâ€. Biology of Reproduction, 2020, 103, 275-285.	2.7	23
17	Challenges & Controlled Release, 2020, 326, 106-119.	9.9	27
18	Antibody-mediated trapping in biological hydrogels is governed by sugar-sugar hydrogen bonds. Acta Biomaterialia, 2020, 107, 91-101.	8.3	11

#	Article	IF	CITATIONS
19	LPS-binding IgG arrests actively motile Salmonella Typhimurium in gastrointestinal mucus. Mucosal Immunology, 2020, 13, 814-823.	6.0	22
20	Efficient and Highly Specific Gene Transfer Using Mutated Lentiviral Vectors Redirected with Bispecific Antibodies. MBio, 2020, 11 , .	4.1	4
21	Tuning Barrier Properties of Biological Hydrogels. ACS Applied Bio Materials, 2020, 3, 2875-2890.	4.6	13
22	The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. PLoS Pathogens, 2020, 16, e1008236.	4.7	46
23	Immersive Research Experiences for High School Students Aimed at Promoting Diversity and Visibility in Pharmacy Education. American Journal of Pharmaceutical Education, 2020, 84, ajpe7589.	2.1	11
24	Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102076.	3.3	15
25	The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. MBio, 2019, 10, .	4.1	107
26	Modeling Barrier Properties of Intestinal Mucus Reinforced with IgG and Secretory IgA against Motile Bacteria. ACS Infectious Diseases, 2019, 5, 1570-1580.	3.8	20
27	Antibody-Mediated Immobilization of Virions in Mucus. Bulletin of Mathematical Biology, 2019, 81, 4069-4099.	1.9	8
28	Limited processivity of single motors improves overall transport flux of self-assembled motor-cargo complexes. Physical Review E, 2019, 100, 022408.	2.1	2
29	Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG. Journal of Controlled Release, 2019, 311-312, 138-146.	9.9	53
30	Robust antigen-specific tuning of the nanoscale barrier properties of biogels using matrix-associating IgG and IgM antibodies. Acta Biomaterialia, 2019, 89, 95-103.	8.3	5
31	Engineering Polymerâ€Binding Bispecific Antibodies for Enhanced Pretargeted Delivery of Nanoparticles to Mucusâ€Covered Epithelium. Angewandte Chemie - International Edition, 2019, 58, 5604-5608.	13.8	15
32	Engineering Polymerâ€Binding Bispecific Antibodies for Enhanced Pretargeted Delivery of Nanoparticles to Mucusâ€Covered Epithelium. Angewandte Chemie, 2019, 131, 5660-5664.	2.0	3
33	ZMapp Reinforces the Airway Mucosal Barrier Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, 901-910.	4.0	26
34	Accelerated Clearance of Ultrasound Contrast Agents Containing Polyethylene Glycol is Associated with the Generation of Anti-Polyethylene Glycol Antibodies. Ultrasound in Medicine and Biology, 2018, 44, 1266-1280.	1.5	39
35	Physician Awareness of Immune Responses to Polyethylene Glycolâ€Drug Conjugates. Clinical and Translational Science, 2018, 11, 162-165.	3.1	37
36	PEGylation for enhancing nanoparticle diffusion in mucus. Advanced Drug Delivery Reviews, 2018, 124, 125-139.	13.7	273

#	Article	IF	Citations
37	Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Advanced Drug Delivery Reviews, 2018, 124, 64-81.	13.7	38
38	Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition. Mucosal Immunology, 2018, 11, 1477-1486.	6.0	29
39	Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9026-9031.	7.1	138
40	A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse. Journal of Controlled Release, 2018, 284, 171-178.	9.9	49
41	Influenza-binding antibodies immobilise influenza viruses in fresh human airwayÂmucus. European Respiratory Journal, 2017, 49, 1601709.	6.7	45
42	Engineering Well-Characterized PEG-Coated Nanoparticles for Elucidating Biological Barriers to Drug Delivery. Methods in Molecular Biology, 2017, 1530, 125-137.	0.9	14
43	Stereolithography-Based 3D Printed "Pillar Plates―that Minimizes Fluid Transfers During Enzyme Linked Immunosorbent Assays. Annals of Biomedical Engineering, 2017, 45, 982-989.	2.5	1
44	Cross-Reactivity of Select PEG-Binding Antibodies to Other Polymers Containing a C-C-O Backbone. ACS Biomaterials Science and Engineering, 2017, 3, 1605-1615.	5.2	17
45	Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens. Journal of Controlled Release, 2017, 255, 73-80.	9.9	15
46	A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors. Nature Communications, 2017, 8, 833.	12.8	29
47	Multivalent interactions between streptavidin-based pretargeting fusion proteins and cell receptors impede efficient internalization of biotinylated nanoparticles. Acta Biomaterialia, 2017, 63, 181-189.	8.3	5
48	Notice of Removal: Accelerated clearance of ultrasound contrast agents containing polyethylene glycol (PEG) is associated with a PEG-specific immune response. , 2017, , .		0
49	The Young Innovators Program at the Eshelman Institute for Innovation: a case study examining the role of a professional pharmacy school in enhancing STEM pursuits among secondary school students. International Journal of STEM Education, 2017, 4, 17.	5.0	7
50	Mucusâ€Penetrating Nanosuspensions for Enhanced Delivery of Poorly Soluble Drugs to Mucosal Surfaces. Advanced Healthcare Materials, 2016, 5, 2745-2750.	7.6	31
51	The Binding Site Barrier Elicited by Tumor-Associated Fibroblasts Interferes Disposition of Nanoparticles in Stroma-Vessel Type Tumors. ACS Nano, 2016, 10, 9243-9258.	14.6	161
52	Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus. Acta Biomaterialia, 2016, 43, 61-70.	8.3	50
53	Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Analytical Chemistry, 2016, 88, 11804-11812.	6. 5	240
54	Using Computational Modeling To Optimize the Design of Antibodies That Trap Viruses in Mucus. ACS Infectious Diseases, 2016, 2, 82-92.	3.8	29

#	Article	IF	Citations
55	Diffusion of Immunoglobulin G in Shed Vaginal Epithelial Cells and in Cell-Free Regions of Human Cervicovaginal Mucus. PLoS ONE, 2016, 11, e0158338.	2.5	17
56	Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A. PLoS ONE, 2015, 10, e0131351.	2.5	13
57	Antiâ€∢scp>PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 655-677.	6.1	425
58	Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. Journal of Controlled Release, 2015, 220, 715-726.	9.9	19
59	Minimizing biases associated with tracking analysis of submicron particles in heterogeneous biological fluids. Journal of Controlled Release, 2015, 220, 37-43.	9.9	18
60	Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota. MBio, 2015, 6, e01084-15.	4.1	141
61	Modeling Neutralization Kinetics of HIV by Broadly Neutralizing Monoclonal Antibodies in Genital Secretions Coating the Cervicovaginal Mucosa. PLoS ONE, 2014, 9, e100598.	2.5	27
62	Cancer Therapy: Vaginal Delivery of Paclitaxel via Nanoparticles with Nonâ€Mucoadhesive Surfaces Suppresses Cervical Tumor Growth (Adv. Healthcare Mater. 7/2014). Advanced Healthcare Materials, 2014, 3, 1120-1120.	7.6	0
63	Transient Antibody-Mucin Interactions Produce a Dynamic Molecular Shield against Viral Invasion. Biophysical Journal, 2014, 106, 2028-2036.	0.5	49
64	Influence of Vaginal Microbiota on the Diffusional Barrier Properties of Cervicovaginal Mucus. AIDS Research and Human Retroviruses, 2014, 30, A234-A234.	1.1	3
65	Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Substantially Exceeding the Minimum for Brush Conformation. Molecular Pharmaceutics, 2014, 11, 1250-1258.	4.6	216
66	Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol. Journal of Controlled Release, 2014, 192, 202-208.	9.9	99
67	Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model. Drug Delivery and Translational Research, 2014, 4, 203-209.	5.8	12
68	Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. Journal of Controlled Release, 2014, 178, 8-17.	9.9	160
69	The Microstructure and Bulk Rheology of Human Cervicovaginal Mucus Are Remarkably Resistant to Changes in pH. Biomacromolecules, 2013, 14, 4429-4435.	5.4	48
70	Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. Journal of Controlled Release, 2012, 158, 102-107.	9.9	40
71	Mucoadhesive Nanoparticles May Disrupt the Protective Human Mucus Barrier by Altering Its Microstructure. PLoS ONE, 2011, 6, e21547.	2.5	90
72	Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials, 2011, 32, 6285-6290.	11.4	117

#	Article	IF	Citations
73	Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with <i>N</i> -acetyl cysteine. Nanomedicine, 2011, 6, 365-375.	3.3	147
74	Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 598-603.	7.1	321
75	Human Immunodeficiency Virus Type 1 Is Trapped by Acidic but Not by Neutralized Human Cervicovaginal Mucus. Journal of Virology, 2009, 83, 11196-11200.	3.4	217
76	Micro- and macrorheology of mucus. Advanced Drug Delivery Reviews, 2009, 61, 86-100.	13.7	919
77	Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advanced Drug Delivery Reviews, 2009, 61, 158-171.	13.7	1,432
78	Altering Mucus Rheology to "Solidify―Human Mucus at the Nanoscale. PLoS ONE, 2009, 4, e4294.	2.5	120
79	Characterization of the intracellular dynamics of a non-degradative pathway accessed by polymer nanoparticles. Journal of Controlled Release, 2008, 125, 107-111.	9.9	63
80	Real-Time Multiple Particle Tracking of Gene Nanocarriers in Complex Biological Environments. , 2008, 434, 81-97.		22
81	Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1482-1487.	7.1	875
82	Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007, 28, 2876-2884.	11.4	237
83	Quantifying the intracellular transport of viral and nonviral gene vectors in primary neurons. Experimental Biology and Medicine, 2007, 232, 461-9.	2.4	37
84	Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials, 2006, 27, 5143-5150.	11.4	144
85	Characterization of polydimethylsiloxane elastomer degradation via cross-linker hydrolysis. Polymer, 2005, 46, 4204-4211.	3.8	27