Libu Manjakkal, Mrsc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1405392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. Biosensors, 2022, 12, 174.	4.7	20
2	Electrochemical and physicochemical degradability evaluation of printed flexible carbon electrodes in seawater. Journal of Electroanalytical Chemistry, 2022, 920, 116592.	3.8	1
3	Natural Jute Fibreâ€Based Supercapacitors and Sensors for Ecoâ€Friendly Energy Autonomous Systems. Advanced Sustainable Systems, 2021, 5, 2000286.	5.3	39
4	Metal Coated Fabric Based Asymmetric Supercapacitor for Wearable Applications. IEEE Sensors Journal, 2021, 21, 26208-26214.	4.7	11
5	Flexible and Printed Potentiometric pH Sensor for Water Quality Monitoring. , 2021, , .		2
6	Graphene–Graphite Polyurethane Composite Based Wristband Supercapacitor for Wearable Electronics. , 2021, , .		0
7	Energy Autonomous Sweatâ€Based Wearable Systems. Advanced Materials, 2021, 33, e2100899.	21.0	85
8	Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet of Things Journal, 2021, 8, 13805-13824.	8.7	32
9	MnO <i>_x</i> -Electrodeposited Fabric-Based Stretchable Supercapacitors with Intrinsic Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 47581-47592.	8.0	20
10	Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sensors Journal, 2020, 20, 6856-6862.	4.7	34
11	Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Progress in Materials Science, 2020, 109, 100635.	32.8	286
12	Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement. ACS Applied Electronic Materials, 2020, 2, 2601-2610.	4.3	39
13	Glycine-based Flexible Biocompatible Piezoelectric Pressure Sensor for Healthcare Applications. , 2020, , .		0
14	A Wearable Supercapacitor Based on Conductive PEDOT:PSS oated Cloth and a Sweat Electrolyte. Advanced Materials, 2020, 32, e1907254.	21.0	282
15	Flexible potentiometric pH sensors for wearable systems. RSC Advances, 2020, 10, 8594-8617.	3.6	144
16	Metal Coated Conductive Fabrics with Graphite Electrodes and Biocompatible Gel Electrolyte for Wearable Supercapacitors. Advanced Materials Technologies, 2020, 5, 1901107.	5.8	53
17	Flexible Iridium Oxide Based pH Sensor Integrated With Inductively Coupled Wireless Transmission System for Wearable Applications. IEEE Sensors Journal, 2020, 20, 5130-5138.	4.7	21
18	Glycine–Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor. ACS Applied Materials & Interfaces, 2020, 12, 9008-9016.	8.0	244

#	Article	IF	CITATIONS
19	Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications. , 2020, , .		0
20	Flexible Supercapacitor with Sweat Equivalent Electrolyte for Safe and Ecofriendly Energy Storage. , 2020, , .		0
21	Metal Coated Fabric Based Supercapacitors. , 2020, , .		1
22	Cloth Based Biocompatiable Temperature Sensor. , 2019, , .		3
23	Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs. Proceedings of the IEEE, 2019, 107, 2016-2033.	21.3	214
24	Printed Temperature Sensor based on Graphene Oxide/PEDOT:PSS. , 2019, , .		15
25	Graphene–Graphite Polyurethane Composite Based Highâ€Energy Density Flexible Supercapacitors. Advanced Science, 2019, 6, 1802251.	11.2	87
26	ZnO based Screen Printed Aqueous Ammonia Sensor for Water Quality Monitoring. , 2019, , .		9
27	Energy autonomous electronic skin. Npj Flexible Electronics, 2019, 3, .	10.7	245
28	Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors, 2019, 9, 14.	4.7	116
29	Printed flexible electrochemical pH sensors based on CuO nanorods. Sensors and Actuators B: Chemical, 2018, 263, 50-58.	7.8	108
30	Stretchable wireless system for sweat pH monitoring. Biosensors and Bioelectronics, 2018, 107, 192-202.	10.1	247
31	Bio-Organic Glycine Based Flexible Piezoelectric Stress Sensor for Wound Monitoring. , 2018, , .		5
32	Flexible ZnO Nanowires-Graphene Stack by Hot Lamination Method. , 2018, , .		0
33	Energy Autonomous Sensors for Water Quality Monitoring. , 2018, , .		3
34	Contact-Printing of Zinc Oxide Nanowires for Chemical Sensing Applications. , 2018, , .		0
35	Enhanced Triboelectric Nanogenerator Performance via an Optimised Low Permittivity, Low Thickness Substrate. , 2018, , .		2
36	Flexible Printed Reference Electrodes for Electrochemical Applications. Advanced Materials Technologies, 2018, 3, 1800252.	5.8	49

Libu Manjakkal, Mrsc

#	Article	IF	CITATIONS
37	Screen Printed Thick Film Reference Electrodes for Electrochemical Sensing. IEEE Sensors Journal, 2018, 18, 7779-7785.	4.7	33
38	Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy, 2018, 51, 604-612.	16.0	176
39	Cost-effective sensors and sensor nodes for monitoring environmental parameters. Facta Universitatis - Series Electronics and Energetics, 2018, 31, 11-23.	0.9	4
40	Electrical and optical properties of aluminium doped zinc oxide transparent conducting oxide films prepared by dip coating technique. Microelectronics International, 2017, 34, 1-8.	0.6	7
41	TiO ₂ -Based Thick Film pH Sensor. IEEE Sensors Journal, 2017, 17, 248-255.	4.7	53
42	Stretchable pH sensing patch in a hybrid package. , 2017, , .		3
43	High Performance CuO Nanorectangles-Based Room Temperature Flexible NH ₃ Sensor. IEEE Sensors Journal, 2017, 17, 6529-6536.	4.7	20
44	Electrochemical sensors with screen printed Ag AgCl KCl reference electrodes. , 2017, , .		4
45	X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors. Analytica Chimica Acta, 2016, 931, 47-56.	5.4	27
46	Impedancemetric NO sensor based on YSZ/perovskite neodymium cobaltite operating at high temperatures. Sensors and Actuators B: Chemical, 2016, 228, 612-624.	7.8	17
47	Development and characterization of miniaturized LTCC pH sensors with RuO 2 based sensing electrodes. Sensors and Actuators B: Chemical, 2016, 223, 641-649.	7.8	35
48	Potentiometric RuO2–Ta2O5 pH sensors fabricated using thick film and LTCC technologies. Talanta, 2016, 147, 233-240.	5.5	49
49	Planar Impedancemetric NO Sensor with Thick Film Perovskite Electrodes Based on Samarium Cobaltite. Electroanalysis, 2015, 27, 760-769.	2.9	7
50	Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 2015, 759, 82-90.	3.8	51
51	Microstructural, Impedance Spectroscopic and Potentiometric Analysis of Ta ₂ O ₅ Electrochemical Thick Film pH Sensors. Electroanalysis, 2015, 27, 770-781.	2.9	20
52	Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors. Electrochimica Acta, 2015, 168, 246-255.	5.2	57
53	The Effect of Sheet Resistivity and Storage Conditions on Sensitivity of RuO ₂ Based pH Sensors. Key Engineering Materials, 2014, 605, 457-460.	0.4	12
54	Synthesis of Perovskite Sr Doped Lanthanide Cobaltites and Ferrites and Application for Oxygen Sensors: A Comparative Study. Key Engineering Materials, 2014, 605, 483-486.	0.4	4

#	Article	IF	CITATIONS
55	Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sensors and Actuators B: Chemical, 2014, 204, 57-67.	7.8	79
56	A Comparative Study of Potentiometric and Conductimetric Thick Film pH Sensors Made of RuO ₂ Pastes. Sensor Letters, 2014, 12, 1645-1650.	0.4	4
57	Characterization of Strontium Modified Lanthanide Cobaltites and Ferrites as Perovskite Electrodes in Potentiometric Oxygen Sensors. Sensor Letters, 2014, 12, 1664-1668.	0.4	1
58	A Low-Cost pH Sensor Based on RuO ₂ Resistor Material. Nano Hybrids, 0, 5, 1-15.	0.3	22