

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404882/publications.pdf Version: 2024-02-01

XIANC GE

#	Article	lF	CITATIONS
1	Enabling the Highâ€Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase. Small Methods, 2022, 6, e2100920.	8.6	5
2	Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide. ACS Omega, 2022, 7, 11452-11459.	3.5	32
3	Enabling the Highâ€Voltage Operation of Layered Ternary Oxide Cathodes via Thermally Tailored Interphase (Small Methods 4/2022). Small Methods, 2022, 6, .	8.6	1
4	Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery. Journal of Energy Chemistry, 2022, 72, 532-538.	12.9	40
5	A Conjugately Configured Supercapacitor with Suppressed Self-Discharge by Coupling Pairs of Presodiated Manganese Oxides. Energy & Fuels, 2022, 36, 7140-7146.	5.1	5
6	Conjugately configured supercapacitors: Mitigating self-discharge based on pairs of pre-lithiated niobium oxides. Chemical Engineering Journal, 2022, 450, 137977.	12.7	13
7	Deep Cycling for High apacity Liâ€lon Batteries. Advanced Materials, 2021, 33, e2004998.	21.0	43
8	Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage. Energy Storage Materials, 2021, 36, 213-221.	18.0	27
9	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 101-107.	4.7	8
10	Siliconâ€Based Anode Materials: Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes (Small 30/2020). Small, 2020, 16, 2070169.	10.0	0
11	Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes. Small, 2020, 16, e2002094.	10.0	41
12	Dielectric Polarization in Inverse Spinelâ€Structured Mg ₂ TiO ₄ Coating to Suppress Oxygen Evolution of Liâ€Rich Cathode Materials. Advanced Materials, 2020, 32, e2000496.	21.0	134
13	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	14.9	38
14	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	21.0	82
15	Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	21.0	53
16	Lowering Charge Transfer Barrier of LiMn ₂ O ₄ via Nickel Surface Doping To Enhance Li ⁺ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society, 2019, 141, 14038-14042.	13.7	125
17	Electrode Materials: Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970367.	21.0	9
18	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 3521-3526.	13.8	62

XIANG GE

#	Article	IF	CITATIONS
19	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie, 2019, 131, 3559-3564.	2.0	18
20	Pseudocapacitive material with 928†mAh†cmâ^'3 particle-level volumetric specific capacity enabled by continuous phase-transition. Chemical Engineering Journal, 2018, 338, 211-217.	12.7	22
21	A NiCo ₂ O ₄ Shell on a Hollow Ni Nanorod Array Core for Water Splitting with Enhanced Electrocatalytic Performance. ChemNanoMat, 2018, 4, 124-131.	2.8	34
22	Strain Redistribution in Metalâ€Sulfideâ€Composite Anode for Enhancing Volumetric Lithium Storage. ChemElectroChem, 2018, 5, 3906-3912.	3.4	7
23	Honeycombâ€Lanternâ€Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Advanced Materials, 2018, 30, e1805468.	21.0	152
24	Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 2017, 5, 8209-8229.	10.3	274
25	Highly Efficient Bifunctional Catalyst of NiCo ₂ O ₄ @NiO@Ni Core/Shell Nanocone Array for Stable Overall Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1700228.	2.3	16
26	Anchoring Ni ₂ P Sheets on NiCo ₂ O ₄ Nanocone Arrays as Optimized Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1700481.	3.7	59
27	Periodic stacking of 2D charged sheets: Self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide. Nano Energy, 2016, 20, 185-193.	16.0	188
28	Spinel type CoFe oxide porous nanosheets as magnetic adsorbents with fast removal ability and facile separation. Journal of Colloid and Interface Science, 2015, 454, 134-143.	9.4	28
29	Cation–anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. Journal of Materials Chemistry A, 2015, 3, 14228-14238.	10.3	69
30	Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. Journal of Colloid and Interface Science, 2015, 460, 200-208.	9.4	46
31	One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. Journal of Power Sources, 2015, 274, 1-7.	7.8	74
32	An ex-situ nitridation route to synthesize Li 3 N-modified Li anodes for lithium secondary batteries. Journal of Power Sources, 2015, 277, 304-311.	7.8	174
33	Anomalous self-reduction of layered double hydroxide (LDH): from α-Ni(OH) ₂ to hexagonal close packing (HCP) Ni/NiO by annealing without a reductant. Chemical Communications, 2015, 51, 1004-1007.	4.1	23
34	Endowing manganese oxide with fast adsorption ability through controlling the manganese carbonate precursor assembled in ionic liquid. Journal of Colloid and Interface Science, 2015, 438, 149-158.	9.4	32
35	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	5.6	363
36	NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical	7.8	106

pseudocapacitor materials. Journal of Power Sources, 2014, 259, 98-105.

7.8 106

XIANG GE

#	Article	IF	CITATIONS
37	One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochimica Acta, 2014, 116, 467-474.	5.2	259
38	Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials. Journal of Materials Chemistry A, 2014, 2, 17066-17076.	10.3	90
39	Correlation between Microstructure and Electrochemical Behavior of the Mesoporous Co ₃ O ₄ Sheet and Its Ionothermal Synthesized Hydrotalcite-like α-Co(OH) ₂ Precursor. Journal of Physical Chemistry C, 2014, 118, 911-923.	3.1	79
40	Graphene-wrapped Ni2P materials: a 3D porous architecture with improved electrochemical performance. Journal of Solid State Electrochemistry, 2014, 18, 2245-2253.	2.5	16
41	NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate. International Journal of Hydrogen Energy, 2014, 39, 10892-10901.	7.1	76
42	A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. Journal of Materials Chemistry A, 2013, 1, 13454.	10.3	70
43	Growth of nickel phosphide films as anodes for lithium-ion batteries: Based on a novel method for synthesis of nickel films using ionic liquids. Electrochimica Acta, 2013, 112, 212-220.	5.2	26