Frederic Geissmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14045/publications.pdf Version: 2024-02-01

		9786	17105
125	39,167	73	122
papers	citations	h-index	g-index
122	122	122	20229
132	132	132	39238
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties. Immunity, 2003, 19, 71-82.	14.3	2,947
2	Development of Monocytes, Macrophages, and Dendritic Cells. Science, 2010, 327, 656-661.	12.6	2,471
3	A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 2012, 336, 86-90.	12.6	2,084
4	Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, 518, 547-551.	27.8	1,724
5	Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior. Science, 2007, 317, 666-670.	12.6	1,637
6	Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2). Cell, 2000, 102, 565-575.	28.9	1,489
7	Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells. Annual Review of Immunology, 2009, 27, 669-692.	21.8	1,345
8	Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 2013, 16, 273-280.	14.8	1,121
9	Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities. Cell, 2014, 159, 1327-1340.	28.9	1,078
10	Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity, 2010, 33, 375-386.	14.3	1,060
11	TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 2007, 317, 1522-1527.	12.6	970
12	A Clonogenic Bone Marrow Progenitor Specific for Macrophages and Dendritic Cells. Science, 2006, 311, 83-87.	12.6	924
13	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	14.5	921
14	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	14.5	872
15	X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nature Genetics, 2001, 27, 277-285.	21.4	784
16	Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 2010, 7, 77-86.	13.7	747
17	Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 2006, 314, 308-312.	12.6	674
18	Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal. Cell, 2013, 153, 362-375.	28.9	621

#	Article	IF	CITATIONS
19	Specification of tissue-resident macrophages during organogenesis. Science, 2016, 353, .	12.6	609
20	Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids. PLoS Biology, 2005, 3, e113.	5.6	590
21	<i>IRF8</i> Mutations and Human Dendritic-Cell Immunodeficiency. New England Journal of Medicine, 2011, 365, 127-138.	27.0	564
22	Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. Journal of Experimental Medicine, 2007, 204, 171-180.	8.5	553
23	The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6Câ^' monocytes. Nature Immunology, 2011, 12, 778-785.	14.5	523
24	Transforming Growth Factor β1, in the Presence of Granulocyte/Macrophage Colony-stimulating Factor and Interleukin 4, Induces Differentiation of Human Peripheral Blood Monocytes into Dendritic Langerhans Cells. Journal of Experimental Medicine, 1998, 187, 961-966.	8.5	488
25	The development and maintenance of resident macrophages. Nature Immunology, 2016, 17, 2-8.	14.5	474
26	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	22.7	461
27	The trafficking of natural killer cells. Immunological Reviews, 2007, 220, 169-182.	6.0	460
28	Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015, 348, 448-453.	12.6	389
29	NR4A1 (Nur77) Deletion Polarizes Macrophages Toward an Inflammatory Phenotype and Increases Atherosclerosis. Circulation Research, 2012, 110, 416-427.	4.5	380
30	Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity. Journal of Experimental Medicine, 2007, 204, 2407-2422.	8.5	374
31	CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. Journal of Experimental Medicine, 2009, 206, 595-606.	8.5	364
32	Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of Tâ€cell responses. Immunology and Cell Biology, 2008, 86, 398-408.	2.3	329
33	Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. Journal of Experimental Medicine, 2009, 206, 3089-3100.	8.5	328
34	Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568, 541-545.	27.8	313
35	TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. Journal of Immunology, 1999, 162, 4567-75.	0.8	282
36	Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nature Communications, 2016, 7, ncomms11852.	12.8	275

#	Article	IF	CITATIONS
37	Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. Journal of Clinical Investigation, 2012, 122, 821-832.	8.2	272
38	X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. Journal of Experimental Medicine, 2006, 203, 1745-1759.	8.5	264
39	Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. Journal of Experimental Medicine, 2011, 208, 2083-2098.	8.5	262
40	Accumulation of Immature Langerhans Cells in Human Lymph Nodes Draining Chronically Inflamed Skin. Journal of Experimental Medicine, 2002, 196, 417-430.	8.5	246
41	Human TLR-7-, -8-, and -9-Mediated Induction of IFN-α/β and -λ Is IRAK-4 Dependent and Redundant for Protective Immunity to Viruses. Immunity, 2005, 23, 465-478.	14.3	245
42	Genetic Evidence Supporting Selection of the Vα14i NKT Cell Lineage from Double-Positive Thymocyte Precursors. Immunity, 2005, 22, 705-716.	14.3	240
43	The Heterogeneity of Ly6Chi Monocytes Controls Their Differentiation into iNOS+ Macrophages or Monocyte-Derived Dendritic Cells. Immunity, 2016, 45, 1205-1218.	14.3	237
44	Liver-Derived Signals Sequentially Reprogram Myeloid Enhancers to Initiate and Maintain Kupffer Cell Identity. Immunity, 2019, 51, 655-670.e8.	14.3	234
45	<i>BRAF</i> Mutation Correlates With High-Risk Langerhans Cell Histiocytosis and Increased Resistance to First-Line Therapy. Journal of Clinical Oncology, 2016, 34, 3023-3030.	1.6	233
46	Differentiation of Langerhans cells in Langerhans cell histiocytosis. Blood, 2001, 97, 1241-1248.	1.4	227
47	Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells. Cell Stem Cell, 2013, 13, 535-548.	11.1	225
48	Macrophages of distinct origins contribute to tumor development in the lung. Journal of Experimental Medicine, 2018, 215, 2536-2553.	8.5	203
49	Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nature Communications, 2018, 9, 75.	12.8	194
50	MEF2 Is an InÂVivo Immune-Metabolic Switch. Cell, 2013, 155, 435-447.	28.9	174
51	Neutralization of IFNγ defeats haemophagocytosis in LCMVâ€infected perforin―and Rab27aâ€deficient mice. EMBO Molecular Medicine, 2009, 1, 112-124.	6.9	165
52	Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages. Cell, 2016, 166, 991-1003.	28.9	154
53	Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Science Immunology, 2018, 3, .	11.9	152
54	Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. Journal of Clinical Investigation, 2001, 108, 703-708.	8.2	152

#	Article	IF	CITATIONS
55	Development and homeostasis of "resident―myeloid cells: The case of the microglia. Glia, 2013, 61, 112-120.	4.9	151
56	Macrophage-Derived upd3 Cytokine Causes Impaired Glucose Homeostasis and Reduced Lifespan in Drosophila Fed a Lipid-Rich Diet. Immunity, 2015, 42, 133-144.	14.3	148
57	Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common <i>TYK2</i> missense variant. Science Immunology, 2018, 3, .	11.9	148
58	A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 2017, 549, 389-393.	27.8	144
59	Retinoids Regulate Survival and Antigen Presentation by Immature Dendritic Cells. Journal of Experimental Medicine, 2003, 198, 623-634.	8.5	143
60	A Subset of Human Dendritic Cells Expresses IgA Fc Receptor (CD89), Which Mediates Internalization and Activation Upon Cross-Linking by IgA Complexes. Journal of Immunology, 2001, 166, 346-352.	0.8	141
61	Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cellular Microbiology, 2001, 3, 331-340.	2.1	138
62	B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease. PLoS ONE, 2012, 7, e33891.	2.5	132
63	Expansion of Regulatory T Cells in Patients with Langerhans Cell Histiocytosis. PLoS Medicine, 2007, 4, e253.	8.4	128
64	Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nature Neuroscience, 2020, 23, 351-362.	14.8	123
65	Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nature Medicine, 2019, 25, 1839-1842.	30.7	122
66	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	8.2	115
67	Regulation of Monocyte Functional Heterogeneity by miR-146a and Relb. Cell Reports, 2012, 1, 317-324.	6.4	105
68	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	14.5	96
69	TNF-α blockade induces IL-10 expression in human CD4+ T cells. Nature Communications, 2014, 5, 3199.	12.8	95
70	Origins, Biology, and Diseases of Tissue Macrophages. Annual Review of Immunology, 2021, 39, 313-344.	21.8	88
71	Selective Nanoparticle Targeting of the Renal Tubules. Hypertension, 2018, 71, 87-94.	2.7	85
72	Multiple TGF-β Superfamily Signals Modulate the Adult Drosophila Immune Response. Current Biology, 2011, 21, 1672-1677.	3.9	84

#	Article	IF	CITATIONS
73	Diet-regulated production of PDGFcc by macrophages controls energy storage. Science, 2021, 373, .	12.6	84
74	Langerin negative dendritic cells promote potent CD8 ⁺ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3041-3046.	7.1	82
75	Monocytes control natural killer cell differentiation to effector phenotypes. Blood, 2011, 117, 4511-4518.	1.4	80
76	Development and function of tissue resident macrophages in mice. Seminars in Immunology, 2015, 27, 369-378.	5.6	79
77	Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. Journal of Clinical Investigation, 2004, 114, 1512-1517.	8.2	78
78	Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45ro+CD25+CD127 ^{low} regulatory T cells. Arthritis and Rheumatism, 2013, 65, 627-638.	6.7	76
79	The Origin of Tissue-Resident Macrophages: When an Erythro-myeloid Progenitor Is an Erythro-myeloid Progenitor. Immunity, 2015, 43, 1023-1024.	14.3	76
80	Digestive tract involvement in Langerhans cell histiocytosis. Journal of Pediatrics, 1996, 129, 836-845.	1.8	71
81	Lack of expression of E-cadherin is associated with dissemination of Langerhans' cell histiocytosis and poor outcome. Journal of Pathology, 1997, 181, 301-304.	4.5	66
82	Fuz Mutant Mice Reveal Shared Mechanisms between Ciliopathies and FGF-Related Syndromes. Developmental Cell, 2013, 25, 623-635.	7.0	65
83	Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Developmental Cell, 2019, 51, 787-803.e5.	7.0	64
84	Toward a functional characterization of blood monocytes. Immunology and Cell Biology, 2011, 89, 2-4.	2.3	60
85	Retinoic acid therapy in "degenerative-like―neuro-langerhans cell histiocytosis: A prospective pilot study. Pediatric Blood and Cancer, 2004, 43, 55-58.	1.5	58
86	Inflammatory Monocytes and Neutrophils Are Licensed to Kill during Memory Responses In Vivo. PLoS Pathogens, 2011, 7, e1002457.	4.7	56
87	A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). European Journal of Immunology, 2008, 38, 3219-3225.	2.9	54
88	Development and homeostasis of â€~resident' myeloid cells: the case of the Langerhans cell. Trends in Immunology, 2010, 31, 438-445.	6.8	53
89	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	14.5	49
90	Herpes-Virus Infection in Patients with Langerhans Cell Histiocytosis: A Case-Controlled Sero-Epidemiological Study, and In Situ Analysis. PLoS ONE, 2008, 3, e3262.	2.5	48

#	Article	IF	CITATIONS
91	The origin of dendritic cells. Nature Immunology, 2007, 8, 558-560.	14.5	45
92	IRF4 haploinsufficiency in a family with Whippleâ \in Ms disease. ELife, 2018, 7, .	6.0	43
93	Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood, 2011, 117, 7063-7069.	1.4	41
94	The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Scientific Reports, 2015, 5, 10055.	3.3	39
95	Homing Receptor α4β7 Integrin Expression Predicts Digestive Tract Involvement in Mantle Cell Lymphoma. American Journal of Pathology, 1998, 153, 1701-1705.	3.8	38
96	Myb-Independent Macrophages: A Family of Cells That Develops with Their Tissue of Residence and Is Involved in Its Homeostasis. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 91-100.	1.1	35
97	Heterogeneity in the Locomotory Behavior of Human Monocyte Subsets over Human Vascular Endothelium In Vitro. Journal of Immunology, 2015, 195, 1162-1170.	0.8	33
98	Macrophage ontogeny in the control of adipose tissue biology. Current Opinion in Immunology, 2020, 62, 1-8.	5.5	29
99	A stratified myeloid system, the challenge of understanding macrophage diversity. Seminars in Immunology, 2015, 27, 353-356.	5.6	28
100	NR4A1 Deletion in Marginal Zone B Cells Exacerbates Atherosclerosis in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2598-2604.	2.4	27
101	Langerhans cell deficiency in reticular dysgenesis. Blood, 2000, 96, 58-62.	1.4	27
102	Splenic CD8α ⁺ dendritic cells undergo rapid programming by cytosolic bacteria and inflammation to induce protective CD8 ⁺ Tâ€cell memory. European Journal of Immunology, 2011, 41, 1594-1605.	2.9	26
103	Normal CD40-mediated activation of monocytes and dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. European Journal of Immunology, 1998, 28, 3648-3654.	2.9	25
104	FAS/FAS-L dependent killing of activated human monocytes and macrophages by CD4+CD25â^' responder T cells, but not CD4+CD25+ regulatory T cells. Journal of Autoimmunity, 2012, 38, 29-38.	6.5	24
105	The detection of CD14 and CD16 in paraffin-embedded bone marrow biopsies is useful for the diagnosis of chronic myelomonocytic leukemia. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 454, 411-419.	2.8	22
106	Histone deacetylase 3 controls lung alveolar macrophage development and homeostasis. Nature Communications, 2020, 11, 3822.	12.8	22
107	Inherited human c-Rel deficiency disrupts myeloid and lymphoid immunity to multiple infectious agents. Journal of Clinical Investigation, 2021, 131, .	8.2	21
108	The Class 6 Semaphorin SEMA6A Is Induced by Interferon-Î ³ and Defines an Activation Status of Langerhans Cells Observed in Pathological Situations. American Journal of Pathology, 2006, 168, 453-465.	3.8	19

#	Article	IF	CITATIONS
109	Homeostasis of dendritic cell pool in lymphoid organs. Nature Immunology, 2008, 9, 584-586.	14.5	18
110	Identifying the infiltrators. Science, 2014, 344, 801-802.	12.6	15
111	Measuring Intravascular Migration of Mouse Ly6C low Monocytes In Vivo Using Intravital Microscopy. Current Protocols in Immunology, 2013, 101, Unit 14.33.1-16.	3.6	13
112	CD101 expression by Langerhans cell histiocytosis cells. Histopathology, 2000, 36, 229-232.	2.9	12
113	No association between Langerhans cell histiocytosis and human herpes virus 8. Medical and Pediatric Oncology, 2002, 39, 187-189.	1.0	11
114	Activating Mutations in CSF1R and Additional Receptor Tyrosine Kinases in Sporadic and Familial Histiocytic Neoplasms. Blood, 2018, 132, 49-49.	1.4	10
115	Roles of lymphoid cells in the differentiation of Langerhans dendritic cells in mice. Immunobiology, 2004, 209, 209-221.	1.9	9
116	Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities. Cell, 2015, 160, 351-352.	28.9	9
117	Toxoplasma-Induced Cystitis in a Patient with AIDS. Clinical Infectious Diseases, 1994, 18, 453-454.	5.8	6
118	IL-13 Is More Efficient than IL-4 for Recruiting Langerhans Cell Precursors from Peripheral CD14+ Monocytes. Exogenous Dermatology, 2002, 1, 279-289.	0.5	4
119	Inducible disruption of the c-myb gene allows allogeneic bone marrow transplantation without irradiation. Journal of Immunological Methods, 2018, 457, 66-72.	1.4	4
120	Les cellules de Langerhans au cours des gingivites et des parodontites Medecine/Sciences, 1998, 14, 1222.	0.2	3
121	Blood Cells of Adult <i>Drosophila</i> Do Not Expand, But Control Survival after Bacterial Infection by Induction of <i>Drosocin</i> Around Their Reservoir at the Respiratory Epithelia. SSRN Electronic Journal, 0, , .	0.4	1
122	The real thing: How to make human DC subsets. Journal of Experimental Medicine, 2015, 212, 285-285.	8.5	0
123	Embryonic thymopoiesis is initiated by an immune-restricted lympho-myeloid progenitor, independently of notch signaling. Experimental Hematology, 2017, 53, S113-S114.	0.4	0
124	Editorial overview: Innate immunity from a phylogenic perspective. Current Opinion in Immunology, 2020, 62, iii-v.	5.5	0
125	Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. Journal of Cell Biology, 2007, 176, i3-i3.	5.2	0