Xiaoyun Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404467/publications.pdf Version: 2024-02-01

Χιλογιινι Γιι

#	Article	IF	CITATIONS
1	Discovery of novel TrkA allosteric inhibitors: Structure-based virtual screening, biological evaluation and preliminary SAR studies. European Journal of Medicinal Chemistry, 2022, 228, 114022.	2.6	7
2	LSâ€106, a novel EGFR inhibitor targeting C797S, exhibits antitumor activities both in vitro and in vivo. Cancer Science, 2022, 113, 709-720.	1.7	19
3	Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. European Journal of Medicinal Chemistry, 2022, 230, 114088.	2.6	39
4	Optimization of Brigatinib as New Wild-Type Sparing Inhibitors of EGFR ^{T790M/C797S} Mutants. ACS Medicinal Chemistry Letters, 2022, 13, 196-202.	1.3	8
5	Discovery of the First Examples of Threonine Tyrosine Kinase PROTAC Degraders. Journal of Medicinal Chemistry, 2022, 65, 2313-2328.	2.9	8
6	Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 58-83.	2.9	46
7	Targeted inhibition of ZAK ameliorates renal interstitial fibrosis. Translational Research, 2022, 246, 49-65.	2.2	5
8	Design, Synthesis, and Biological Evaluation of Aminoindazole Derivatives as Highly Selective Covalent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR4. Journal of Medicinal Chemistry, 2022, 65, 5113-5133.	2.9	14
9	Discovery of the First Highly Selective and Broadly Effective Macrocycle-Based Type II TRK Inhibitors that Overcome Clinically Acquired Resistance. Journal of Medicinal Chemistry, 2022, 65, 6325-6337.	2.9	13
10	Conformational Constrained 4-(1-Sulfonyl-3-indol)yl-2-phenylaminopyrimidine Derivatives as New Fourth-Generation Epidermal Growth Factor Receptor Inhibitors Targeting T790M/C797S Mutations. Journal of Medicinal Chemistry, 2022, 65, 6840-6858.	2.9	20
11	Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. European Journal of Medicinal Chemistry, 2021, 211, 113023.	2.6	15
12	Design, synthesis, and biological evaluation of Bcr-Abl PROTACs to overcome T315I mutation. Acta Pharmaceutica Sinica B, 2021, 11, 1315-1328.	5.7	14
13	Deep learning-driven scaffold hopping in the discovery of Akt kinase inhibitors. Chemical Communications, 2021, 57, 10588-10591.	2.2	6
14	Investigation of Covalent Warheads in the Design of 2-Aminopyrimidine-based FGFR4 Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 647-652.	1.3	9
15	TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discovery Today, 2021, 26, 2445-2455.	3.2	13
16	Discovery of 5-methylpyrimidopyridone analogues as selective antimycobacterial agents. Bioorganic and Medicinal Chemistry, 2021, 49, 116426.	1.4	1
17	Design, Synthesis, and Structure–Activity Relationships of 1,2,3-Triazole Benzenesulfonamides as New Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2114-2130.	2.9	19
18	2-Oxo-3,4-dihydropyrimido[4,5-d] pyrimidines as new reversible inhibitors of EGFR C797S (Cys797 to) Tj ETQq	0 0 0 rgBT /	Overlock 10 T

2

XIAOYUN LU

#	Article	IF	CITATIONS
19	New Promise and Opportunities for Allosteric Kinase Inhibitors. Angewandte Chemie - International Edition, 2020, 59, 13764-13776.	7.2	109
20	Assessment of Clofazimine and TB47 Combination Activity against Mycobacterium abscessus Using a Bioluminescent Approach. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	14
21	Design and Optimization of 3â€2-(Imidazo[1,2- <i>a</i>]pyrazin-3-yl)-[1,1â€2-biphenyl]-3-carboxamides as Selecti DDR1 Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 379-384.	ve 1.3	11
22	Small-Molecule Inhibitors Directly Targeting KRAS as Anticancer Therapeutics. Journal of Medicinal Chemistry, 2020, 63, 14404-14424.	2.9	56
23	MmpL3 inhibitors as antituberculosis drugs. European Journal of Medicinal Chemistry, 2020, 200, 112390.	2.6	31
24	Medicinal Chemistry Strategies for the Development of Kinase Inhibitors Targeting Point Mutations. Journal of Medicinal Chemistry, 2020, 63, 10726-10741.	2.9	30
25	New techniques and strategies in drug discovery. Chinese Chemical Letters, 2020, 31, 1695-1708.	4.8	82
26	Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications, 2020, 11, 1473.	5.8	27
27	Design and synthesis of selective degraders of EGFRL858R/T790M mutant. European Journal of Medicinal Chemistry, 2020, 192, 112199.	2.6	59
28	The synthesis and biological evaluation of sanguinarine derivatives as anti-non-small cell lung cancer agents. RSC Medicinal Chemistry, 2020, 11, 293-296.	1.7	3
29	Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angewandte Chemie, 2020, 132, 13868-13881.	1.6	2
30	New antituberculosis drugs targeting the respiratory chain. Chinese Chemical Letters, 2020, 31, 1357-1365.	4.8	12
31	Small-Molecule CSF1R Inhibitors as Anticancer Agents. Current Medicinal Chemistry, 2020, 27, 3944-3966.	1.2	29
32	2-Amino-2,3-dihydro-1 <i>H</i> -indene-5-carboxamide-Based Discoidin Domain Receptor 1 (DDR1) Inhibitors: Design, Synthesis, and in Vivo Antipancreatic Cancer Efficacy. Journal of Medicinal Chemistry, 2019, 62, 7431-7444.	2.9	43
33	Structure-Based Design of 5-Methylpyrimidopyridone Derivatives as New Wild-Type Sparing Inhibitors of the Epidermal Growth Factor Receptor Triple Mutant (EGFR ^{L858R/T790M/C797S}). Journal of Medicinal Chemistry, 2019, 62, 7302-7308.	2.9	35
34	Rotational Freedom, Steric Hindrance, and Protein Dynamics Explain BLU554 Selectivity for the Hinge Cysteine of FGFR4. ACS Medicinal Chemistry Letters, 2019, 10, 1180-1186.	1.3	18
35	Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. European Journal of Medicinal Chemistry, 2019, 166, 318-327.	2.6	21
36	Design, synthesis and biological evaluation of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methylbenzamides as potent and selective pan-tropomyosin receptor kinase (TRK) inhibitors. European Journal of Medicinal Chemistry, 2019, 179, 470-482.	2.6	16

Χιαογύν Lu

#	Article	IF	CITATIONS
37	Identification of Pyrazolo[1,5-a]pyridine-3-carboxamide Diaryl Derivatives as Drug Resistant Antituberculosis Agents. ACS Medicinal Chemistry Letters, 2019, 10, 295-299.	1.3	18
38	Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy: Advances and Prospects. Journal of Medicinal Chemistry, 2019, 62, 2905-2915.	2.9	58
39	GZD2202, a novel TrkB inhibitor, suppresses BDNF-mediated proliferation and metastasis in neuroblastoma models. Journal of Drug Targeting, 2019, 27, 442-450.	2.1	4
40	Pyrazolo[1,5- <i>a</i>]pyridine Inhibitor of the Respiratory Cytochrome <i>bcc</i> Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infectious Diseases, 2019, 5, 239-249.	1.8	74
41	Design, Synthesis, and Structure–Activity Relationship Study of 2-Oxo-3,4-dihydropyrimido[4,5- <i>d</i>]pyrimidines as New Colony Stimulating Factor 1 Receptor (CSF1R) Kinase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 2353-2371.	2.9	21
42	YL143, a novel mutant selective irreversible EGFR inhibitor, overcomes EGFR ^{L858R, T790M} â€mutant resistance in vitro and in vivo. Cancer Medicine, 2018, 7, 1430-1439.	1.3	2
43	Targeting EGFR ^{L858R/T790M} and EGFR ^{L858R/T790M/C797S} resistance mutations in NSCLC: Current developments in medicinal chemistry. Medicinal Research Reviews, 2018, 38, 1550-1581.	5.0	113
44	Discovery of JND3229 as a New EGFR ^{C797S} Mutant Inhibitor with In Vivo Monodrug Efficacy. ACS Medicinal Chemistry Letters, 2018, 9, 1123-1127.	1.3	46
45	Design, Synthesis, and Biological Evaluation of 3-(Imidazo[1,2- <i>a</i>]pyrazin-3-ylethynyl)-4-isopropyl- <i>N</i> -(3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoror as a Dual Inhibitor of Discoidin Domain Receptors 1 and 2. Journal of Medicinal Chemistry, 2018, 61, 7977-7990.	nethyl)phe	enyl)benzam
46	Tetrahydroisoquinoline-7-carboxamide Derivatives as New Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 327-332.	1.3	31
47	Benzylsulfanyl benzo-heterocycle amides and hydrazones as new agents against drug-susceptible and resistant Mycobacterium tuberculosis. MedChemComm, 2017, 8, 1303-1306.	3.5	8
48	2-Oxo-3, 4-dihydropyrimido[4, 5- d]pyrimidinyl derivatives as new irreversible pan fibroblast growth factor receptor (FGFR) inhibitors. European Journal of Medicinal Chemistry, 2017, 135, 531-543.	2.6	18
49	A structure-guided optimization of pyrido[2,3-d]pyrimidin-7-ones as selective inhibitors of ECFRL858R/T790M mutant with improved pharmacokinetic properties. European Journal of Medicinal Chemistry, 2017, 126, 1107-1117.	2.6	31
	Structure Based Design of		

Xiaoyun Lu

#	Article	lF	CITATIONS
55	3â€aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors. Chemical Biology and Drug Design, 2016, 88, 690-698.	1.5	6
56	Structure-Based Design of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 5911-5916.	2.9	51
57	Design and synthesis of N -(4-aminopyridin-2-yl)amides as B-Raf V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2760-2763.	1.0	7
58	Discovery of new chemical entities as potential leads against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5916-5919.	1.0	25
59	Leucine-zipper and Sterile-α Motif Kinase (ZAK): A Potential Target for Drug Discovery. Current Medicinal Chemistry, 2016, 23, 3801-3812.	1.2	6
60	Design, Synthesis, and Biological Evaluation of Pyrazolo[1,5- <i>a</i>]pyridine-3-carboxamides as Novel Antitubercular Agents. ACS Medicinal Chemistry Letters, 2015, 6, 814-818.	1.3	82
61	Small Molecule Discoidin Domain Receptor Kinase Inhibitors and Potential Medical Applications. Journal of Medicinal Chemistry, 2015, 58, 3287-3301.	2.9	57
62	C5-substituted pyrido[2,3-d]pyrimidin-7-ones as highly specific kinase inhibitors targeting the clinical resistance-related EGFR ^{T790M} mutant. MedChemComm, 2015, 6, 1693-1697.	3.5	31
63	Design, Synthesis, and Biological Evaluation of 2-Oxo-3,4-dihydropyrimido[4,5- <i>d</i>]pyrimidinyl Derivatives as New Irreversible Epidermal Growth Factor Receptor Inhibitors with Improved Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2013, 56, 8803-8813.	2.9	30
64	Identification of GZD824 as an Orally Bioavailable Inhibitor That Targets Phosphorylated and Nonphosphorylated Breakpoint Cluster Region–Abelson (Bcr-Abl) Kinase and Overcomes Clinically Acquired Mutation-Induced Resistance against Imatinib. Journal of Medicinal Chemistry, 2013, 56, 879-894	2.9	125
65	Discovery and Optimization of 3-(2-(Pyrazolo[1,5- <i>a</i>]pyrimidin-6-yl)ethynyl)benzamides as Novel Selective and Orally Bioavailable Discoidin Domain Receptor 1 (DDR1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 3281-3295.	2.9	128
66	Pyrimido[4,5â€ <i>d</i>]pyrimidinâ€4(1 <i>H</i>)â€one Derivatives as Selective Inhibitors of EGFR Threonine ⁷⁹⁰ to Methionine ⁷⁹⁰ (T790M) Mutants. Angewandte Chemie - International Edition, 2013, 52, 8387-8390.	7.2	30
67	Design, Synthesis, and Biological Evaluation of Novel Conformationally Constrained Inhibitors Targeting Epidermal Growth Factor Receptor Threonine ⁷⁹⁰ → Methionine ⁷⁹⁰ Mutant. Journal of Medicinal Chemistry, 2012, 55, 2711-2723.	2.9	74
68	Design, Synthesis, and Biological Evaluation of 3-(1 <i>H</i> -1,2,3-Triazol-1-yl)benzamide Derivatives as Potent Pan Bcr-Abl Inhibitors Including the Threonine ³¹⁵ →Isoleucine ³¹⁵ Mutant. Journal of Medicinal Chemistry, 2012, 55, 10033-10046.	2.9	34