Vanesa CarrascÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wine aroma vectors and sensory attributes. , 2022, , 3-39.		7
2	Can aldehyde accumulation rates of red wines undergoing oxidation be predicted in accelerated conditions? The controverted role of aldehyde–polyphenol reactivity. Journal of the Science of Food and Agriculture, 2022, 102, 3869-3878.	3.5	1
3	An Index for Wine Acetaldehyde Reactive Potential (ARP) and Some Derived Remarks about the Accumulation of Acetaldehyde during Wine Oxidation. Foods, 2022, 11, 476.	4.3	2
4	Maturation of Moristel in Different Vineyards: Amino Acid and Aroma Composition of Mistelles and Wines with Particular Emphasis in Strecker Aldehydes. Foods, 2022, 11, 958.	4.3	2
5	Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation. Molecules, 2022, 27, 3056.	3.8	1
6	Validation of the Eclipse Farm 4G & COMET for Detection of Antibiotics in Raw Bovine Milk: AOAC Performance Tested MethodSM 022101. Journal of AOAC INTERNATIONAL, 2021, 104, 1289-1297.	1.5	1
7	Sensory Relevance of Strecker Aldehydes in Wines. Preliminary Studies of Its Removal with Different Type of Resins. Foods, 2021, 10, 1711.	4.3	7
8	An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 2021, 365, 130405.	8.2	5
9	Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 15290-15300.	5.2	4
10	Development of a new strategy for studying the aroma potential of winemaking grapes through the accelerated hydrolysis of phenolic and aromatic fractions (PAFs). Food Research International, 2020, 127, 108728.	6.2	18
11	Effect of grape maturity on wine sensory and chemical features: The case of Moristel wines. LWT - Food Science and Technology, 2020, 118, 108848.	5.2	18
12	Some clues about the changes in wine aroma composition associated to the maturation of "neutral― grapes. Food Chemistry, 2020, 320, 126610.	8.2	12
13	A study to reduce the allergen contamination in food-contact surfaces at canteen kitchens. International Journal of Gastronomy and Food Science, 2019, 17, 100165.	3.0	11
14	Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. Journal of Chromatography A, 2019, 1596, 152-160.	3.7	14
15	The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines. , 2019, , 283-307.		9
16	A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition. Food Chemistry, 2018, 248, 37-45.	8.2	22
17	The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?. Food Chemistry, 2018, 241, 206-214.	8.2	64
18	Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Frontiers in Chemistry, 2018, 6, 20.	3.6	46

VANESA CARRASCÃ³N

#	Article	IF	CITATIONS
19	Gas chromatography-mass spectrometry strategies for the accurate and sensitive speciation of sulfur dioxide in wine. Journal of Chromatography A, 2017, 1504, 27-34.	3.7	43
20	Oxygen and SO ₂ Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition. Journal of Agricultural and Food Chemistry, 2017, 65, 9488-9495.	5.2	28
21	Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chemistry, 2016, 213, 123-134.	8.2	45
22	Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 608-617.	5.2	58
23	Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO ₂ . Journal of Agricultural and Food Chemistry, 2015, 63, 10928-10937.	5.2	58
24	Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts. Journal of Agricultural and Food Chemistry, 2015, 63, 10938-10947.	5.2	31
25	Characterisation of the key odorants in a squid broth (Illex argentinus). LWT - Food Science and Technology, 2014, 57, 656-662.	5.2	13
26	Simultaneous determination of free and bonded forms of odor-active carbonyls in wine using a headspace solid phase microextraction strategy. Journal of Chromatography A, 2014, 1369, 33-42.	3.7	46
27	Key Changes in Wine Aroma Active Compounds during Bottle Storage of Spanish Red Wines under Different Oxygen Levels. Journal of Agricultural and Food Chemistry, 2014, 62, 10015-10027.	5.2	48
28	The effect of humidity on the ozonolysis of unsaturated compounds in aerosol particles. Physical Chemistry Chemical Physics, 2012, 14, 8023.	2.8	31
29	Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid–gas transfer rates. Journal of Chromatography A, 2012, 1266, 1-9.	3.7	23
30	Aroma Chemical Composition of Red Wines from Different Price Categories and Its Relationship to Quality. Journal of Agricultural and Food Chemistry, 2012, 60, 5045-5056.	5.2	81
31	Insights on the chemical basis of the astringency of Spanish red wines. Food Chemistry, 2012, 134, 1484-1493.	8.2	34
32	Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines can be Predicted from their Aroma-Active Chemical Composition. Journal of Agricultural and Food Chemistry, 2011, 59, 7916-7924.	5.2	130
33	Analytical and Sensorial Characterization of the Aroma of Wines Produced with Sour Rotten Grapes Using GC-O and GC-MS: Identification of Key Aroma Compounds. Journal of Agricultural and Food Chemistry, 2011, 59, 2543-2553.	5.2	53
34	Pigment composition and color parameters of commercial Spanish red wine samples: linkage to quality perception. European Food Research and Technology, 2011, 232, 877-887.	3.3	25
35	Cas chromatographic–olfactometric characterisation of headspace and mouthspace key aroma compounds in fresh and frozen lamb meat. Food Chemistry, 2011, 129, 1909-1918.	8.2	63
36	Analysis, occurrence and potential sensory significance of aliphatic aldehydes in white wines. Food Chemistry, 2011, 127, 1397-1403.	8.2	37

VANESA CARRASCÃ³N

#	Article	IF	CITATIONS
37	Producing headspace extracts for the gas chromatography–olfactometric evaluation of wine aroma. Food Chemistry, 2010, 123, 188-195.	8.2	54
38	Improved solid-phase extraction procedure for the isolation and in-sorbent pentafluorobenzyl alkylation of polyfunctional mercaptans. Journal of Chromatography A, 2008, 1185, 9-18.	3.7	65
39	An Assessment of the Role Played by Some Oxidation-Related Aldehydes in Wine Aroma. Journal of Agricultural and Food Chemistry, 2007, 55, 876-881.	5.2	183
40	Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption. Journal of Chromatography A, 2007, 1139, 36-44.	3.7	32
41	Solid phase extraction, multidimensional gas chromatography mass spectrometry determination of four novel aroma powerful ethyl esters. Journal of Chromatography A, 2007, 1140, 180-188.	3.7	96
42	Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography–ion-trap mass spectrometry. Journal of Chromatography A, 2003, 1010, 95-103.	3.7	88
43	Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2002, 966, 167-177.	3.7	431
44	Fast analysis of important wine volatile compounds. Journal of Chromatography A, 2001, 923, 205-214.	3.7	231
45	Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 2000, 80, 1659-1667.	3.5	879
46	Clues about the Role of Methional As Character Impact Odorant of Some Oxidized Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 4268-4272.	5.2	170