Mikhail E Shaposhnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403847/publications.pdf

Version: 2024-02-01

213 papers

23,351 citations

71 h-index 151 g-index

218 all docs

218 docs citations

times ranked

218

8255 citing authors

#	Article	IF	CITATIONS
1	Field redefinitions, perturbative unitarity and Higgs inflation. Journal of High Energy Physics, 2022, 2022, .	1.6	13
2	Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila melanogaster. International Journal of Molecular Sciences, 2021, 22, 2396.	1.8	5
3	Higgs inflation in Einstein-Cartan gravity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008-008.	1.9	23
4	Standard model meets gravity: Electroweak symmetry breaking and inflation. Physical Review D, 2021, 103, .	1.6	19
5	Einstein-Cartan Portal to Dark Matter. Physical Review Letters, 2021, 126, 161301.	2.9	29
6	Uniting Low-Scale Leptogenesis Mechanisms. Physical Review Letters, 2021, 127, 111802.	2.9	30
7	Matter matters in Einstein-Cartan gravity. Physical Review D, 2021, 104, .	1.6	19
8	Reconciling resonant leptogenesis and baryogenesis via neutrino oscillations. Physical Review D, 2021, 104, .	1.6	35
9	Scale and Weyl invariance in Einstein-Cartan gravity. Physical Review D, 2021, 104, .	1.6	15
10	The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology, 2020, 21, 45-56.	2.0	13
11	Spontaneous conformal symmetry breaking in fishnet CFT. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135922.	1.5	12
12	Quantum effects in Palatini Higgs inflation. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 064-064.	1.9	47
13	Terpenoids as Potential Geroprotectors. Antioxidants, 2020, 9, 529.	2.2	52
14	Genome-Protecting Compounds as Potential Geroprotectors. International Journal of Molecular Sciences, 2020, 21, 4484.	1.8	20
15	Einstein-Cartan gravity, matter, and scale-invariant generalization. Journal of High Energy Physics, 2020, 2020, 1.	1.6	24
16	Hidden and explicit quantum scale invariance. Physical Review D, 2019, 99, .	1.6	14
17	Parameter space of baryogenesis in the \hat{l} $\frac{1}{2}$ MSM. Journal of High Energy Physics, 2019, 2019, 1.	1.6	30
18	Asymptotic scale invariance and its consequences. Physical Review D, 2019, 99, .	1.6	16

#	Article	IF	Citations
19	Effects of unpaired 1 gene overexpression on the lifespan of Drosophila melanogaster. BMC Systems Biology, 2019, 13, 16.	3.0	4
20	Chiral charge dynamics in Abelian gauge theories at finite temperature. Journal of High Energy Physics, 2019, 2019, 1.	1.6	19
21	Circadian clock genes' overexpression in Drosophila alters diet impact on lifespan. Biogerontology, 2019, 20, 159-170.	2.0	12
22	CFT data and spontaneously broken conformal invariance. Physical Review D, 2018, 97, .	1.6	10
23	Lattice implementation of Abelian gauge theories with Chern–Simons number and an axion field. Nuclear Physics B, 2018, 926, 544-569.	0.9	24
24	Gravity, scale invariance and the hierarchy problem. Journal of High Energy Physics, 2018, 2018, 1.	1.6	30
25	Conformal symmetry: Towards the link between the Fermi and the Planck scales. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 783, 253-262.	1.5	24
26	Anomalous non-conservation of fermion/chiral number in Abelian gauge theories at finite temperature. Journal of High Energy Physics, 2018, 2018, 1.	1.6	16
27	Polarization of photons emitted by decaying dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 765, 127-131.	1.5	11
28	The active muon shield in the SHiP experiment. Journal of Instrumentation, 2017, 12, P05011-P05011.	0.5	20
29	Fermion number violating effects in low scale leptogenesis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 288-296.	1.5	38
30	Gauge coupling unification without leptoquarks. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 332-338.	1.5	18
31	Geroprotectors: A Unified Concept and Screening Approaches. , 2017, 8, 354.		67
32	Geroprotective and Radioprotective Activity of Quercetin, (-)-Epicatechin, and Ibuprofen in Drosophila melanogaster. Frontiers in Pharmacology, 2016, 7, 505.	1.6	51
33	Model for superconductivity at any temperature. Physical Review D, 2016, 93, .	1.6	3
34	Scale-invariant alternatives to general relativity. II. Dilaton properties. Physical Review D, 2016, 93, .	1.6	28
35	Search for Heavy Right Handed Neutrinos at the FCC-ee. Nuclear and Particle Physics Proceedings, 2016, 273-275, 1883-1890.	0.2	89
36	A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Reports on Progress in Physics, 2016, 79, 124201.	8.1	496

#	Article	IF	CITATIONS
37	Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes. Nucleic Acids Research, 2016, 44, D894-D899. Confined vortices in topologically massive mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/ML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo) (str<="" 0="" 10="" 50="" 697="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>6.5</td><td>9</td></mml:mo)></mml:mrow>	6.5	9
38	mathvariant="normal">U <mml:mo stretchy="false">(<mml:mn>1</mml:mn><mml:mo) (str<="" 0="" 10="" 50="" 697="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>retchy="fa</td><td>lse">)</td></mml:mo)></mml:mo 	retchy="fa	lse">)
	mathvariant="normal">U <mml:mo< td=""><td></td><td></td></mml:mo<>		

#	Article	IF	CITATIONS
55	The νMSM and muon to electron conversion experiments. Hyperfine Interactions, 2013, 214, 5-11.	0.2	9
56	Spontaneously broken scale invariance and minimal fields of canonical dimensionality. Physical Review D, 2013, 88, .	1.6	3
57	Neutrino physics within and beyond the three flavour oscillation. Journal of Physics: Conference Series, 2013, 408, 012015.	0.3	3
58	The νMSM and muon to electron conversion experiments. , 2013, , 5-11.		0
59	Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma. Physical Review Letters, 2012, 109, 111602.	2.9	59
60	Search for GeV-Scale Sterile Neutrinos Responsible for Active Neutrino Oscillations and Baryon Asymmetry of the Universe. Advances in High Energy Physics, 2012, 2012, 1-17.	0.5	29
61	Higgs boson mass and new physics. Journal of High Energy Physics, 2012, 2012, 1.	1.6	424
62	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	1.6	6
63	Higgs–Dilaton cosmology: Are there extra relativistic species?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 718, 507-511.	1.5	41
64	Matter and antimatter in the universe. New Journal of Physics, 2012, 14, 095012.	1.2	231
65	Asymptotic safety of gravity and the Higgs-boson mass. Theoretical and Mathematical Physics(Russian) Tj ETQq1	10.78431	4 rgBT /O <mark>ve</mark> l
66	Scale-invariant alternatives to general relativity. Physical Review D, 2011, 84, .	1.6	70
67	Higgs-dilaton cosmology: From the early to the late Universe. Physical Review D, 2011, 84, .	1.6	168
68	Neutrino masses, dark matter, baryon asymmetry and inflation can be explained at once., 2011,,.		0
69	Higgs inflation: consistency and generalisations. Journal of High Energy Physics, 2011, 2011, 1.	1.6	406
70	Late and early time phenomenology of Higgs-dependent cutoff. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 001-001.	1.9	44
71	Baryon asymmetry of the Universe without Boltzmann or Kadanoff-Baym equations. Physical Review D, 2011, 83, .	1.6	18
72	Cosmology versus standard model. Physics of Particles and Nuclei, 2010, 41, 862-867.	0.2	1

#	Article	IF	CITATIONS
73	Asymptotic safety of gravity and the Higgs boson mass. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 683, 196-200.	1.5	287
74	Resonant production of the sterile neutrino dark matter and fine-tunings in the neutrino minimal standard model. Physical Review D, 2010, 82, .	1.6	18
75	Baryon asymmetry of the Universe in the \hat{l}^{1} /2MSM. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 001-001.	1.9	66
76	On initial conditions for the hot big bang. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 029-029.	1.9	288
77	Baryon Asymmetry of the Universe and Neutrinos. Progress of Theoretical Physics, 2009, 122, 185-203.	2.0	19
78	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	1.6	19
79	SEWDarkM. Nuclear Physics A, 2009, 820, 75c-82c.	0.6	O
80	Quantum scale invariance, cosmological constant and hierarchy problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 671, 162-166.	1.5	208
81	Scale invariance, unimodular gravity and dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 671, 187-192.	1.5	187
82	Standard Model Higgs boson mass from inflation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 675, 88-92.	1.5	288
83	Quantum scale invariance on the lattice. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 675, 403-406.	1.5	20
84	Standard model Higgs boson mass from inflation: two loop analysis. Journal of High Energy Physics, 2009, 2009, 089-089.	1.6	295
85	The Role of Sterile Neutrinos in Cosmology and Astrophysics. Annual Review of Nuclear and Particle Science, 2009, 59, 191-214.	3 . 5	484
86	Baryogenesis. Journal of Physics: Conference Series, 2009, 171, 012005.	0.3	19
87	The Standard Model Higgs boson as the inflaton. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 659, 703-706.	1.5	1,528
88	The $1\frac{1}{2}$ MSM, leptonic asymmetries, and properties of singlet fermions. Journal of High Energy Physics, 2008, 2008, 008-008.	1.6	175
89	Sterile neutrino dark matter as a consequence of $1\frac{1}{2}$ MSM-induced lepton asymmetry. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 031.	1.9	171
90	Sterile neutrinos in cosmology and how to find them in the lab. Journal of Physics: Conference Series, 2008, 136, 022045.	0.3	7

#	Article	IF	CITATIONS
91	Chiral asymmetry from a 5D Higgs mechanism. Journal of High Energy Physics, 2007, 2007, 037-037.	1.6	10
92	How to find neutral leptons of the νMSM?. Journal of High Energy Physics, 2007, 2007, 015-015.	1.6	241
93	EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5
94	A possible symmetry of the. Nuclear Physics B, 2007, 763, 49-59.	0.9	200
95	Anomalous Abelian solitons. Nuclear Physics B, 2007, 775, 365-389.	0.9	5
96	Lightest sterile neutrino abundance within the $1\frac{1}{2}$ MSM. Journal of High Energy Physics, 2007, 2007, 091-091.	1.6	203
97	Searching for dark matter sterile neutrinos in the laboratory. Physical Review D, 2007, 75, .	1.6	45
98	Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters. Physical Review D, 2006, 74, .	1.6	91
99	Strategy for Searching for a Dark Matter Sterile Neutrino. Physical Review Letters, 2006, 97, 261302.	2.9	157
100	Can an odd number of fermions be created due to the chiral anomaly?. Physical Review D, 2006, 73, .	1.6	7
101	On the decoupling of heavy modes in Kaluza–Klein theories. Nuclear Physics B, 2006, 741, 236-268.	0.9	17
102	The νMSM, dark matter and neutrino masses. Journal of Physics: Conference Series, 2006, 39, 176-178.	0.3	6
103	The $\hat{l}^1\!\!/\!2\text{MSM}$, dark matter and baryon asymmetry of the Universe. Journal of Physics: Conference Series, 2006, 39, 9-11.	0.3	4
104	Constraints on sterile neutrinos as dark matter candidates from the diffuse X-ray background. Monthly Notices of the Royal Astronomical Society, 2006, 370, 213-218.	1.6	166
105	Masses of active neutrinos in the \hat{l}_2 MSM from x-ray astronomy. JETP Letters, 2006, 83, 133-135.	0.4	75
106	Opening a new window for warm dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 638, 401-406.	1.5	173
107	The $1\frac{1}{2}$ MSM, inflation, and dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 639, 414-417.	1.5	306
108	Baryon and lepton number violation rates across the electroweak crossover. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 007-007.	1.9	70

#	Article	IF	Citations
109	On the hadronic contribution to sterile neutrino production. Journal of High Energy Physics, 2006, 2006, 053-053.	1.6	103
110	The $\hat{1}$ /2MSM, dark matter and baryon asymmetry of the universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 620, 17-26.	1.5	727
111	Anomalies as a signature of extra dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 626, 184-194.	1.5	9
112	The $\hat{1}$ /2MSM, dark matter and neutrino masses. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 631, 151-156.	1.5	662
113	Superheavy dark matter and supersymmetry. New Astronomy Reviews, 2005, 49, 175-179.	5.2	O
114	The fate of the zero mode of the five-dimensional kink in the presence of gravity. Journal of High Energy Physics, 2005, 2005, 062-062.	1.6	14
115	Primordial magnetic fields. AIP Conference Proceedings, 2005, , .	0.3	5
116	Astrophysical bounds on supersymmetric dark-matter Q-balls. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 011-011.	1.9	29
117	One-loop fermionic corrections to the instanton transition in the two dimensional chiral Higgs model. Physical Review D, 2005, 72, .	1.6	15
118	Observational manifestations of anomaly inflow. Physical Review D, 2005, 72, .	1.6	11
119	Supersymmetric dark-matter Q-balls and their interactions in matter. Physical Review D, 2005, 72, .	1.6	42
120	Late Reheating, Hadronic Jets, and Baryogenesis. Physical Review Letters, 2004, 92, 101303.	2.9	15
121	Quasilocalized gravity without asymptotic flatness. Physical Review D, 2004, 70, .	1.6	11
122	QED from six-dimensional vortex and gauge anomalies. Journal of High Energy Physics, 2003, 2003, 016-016.	1.6	28
123	Localisation and mass generation for non-Abelian gauge fields. Journal of High Energy Physics, 2003, 2003, 068-068.	1.6	19
124	Localizing gravity on a 't Hooft–Polyakov monopole in seven dimensions. Physical Review D, 2002, 66, .	1.6	43
125	A formalism to analyze the spectrum of brane world scenarios. Nuclear Physics B, 2002, 645, 188-216.	0.9	41
126	Warped compactification on Abelian vortex in six dimensions. Nuclear Physics B, 2001, 619, 615-645.	0.9	86

#	Article	IF	Citations
127	Extra dimensions as an alternative to Higgs mechanism?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 515, 442-446.	1.5	31
128	Finite Temperature and Non-Equilibrium Phase Transitions in the Early Universe., 2001,, 123-143.		0
129	Living inside a hedgehog: higher-dimensional solutions that localize gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 491, 353-361.	1.5	113
130	On some new warped brane world solutions in higher dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 491, 329-332.	1.5	42
131	Fermion zero-modes on brane-worlds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 492, 361-364.	1.5	125
132	Localizing Gravity on a Stringlike Defect in Six Dimensions. Physical Review Letters, 2000, 85, 240-243.	2.9	260
133	Primordial magnetic fields from inflation?. Physical Review D, 2000, 62, .	1.6	80
134	Baryogenesis. , 2000, , 397-416.		1
135	Nonequilibrium electroweak baryogenesis at preheating after inflation. Physical Review D, 1999, 60, .	1.6	144
136	Sufficient conditions for the existence of Q balls in gauge theories. JETP Letters, 1998, 67, 247-250.	0.4	19
137	Supersymmetric Q-balls as dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 418, 46-54.	1.5	513
138	New physics in a nutshell, or Q-ball as a power plant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 417, 99-106.	1.5	128
139	Star wreck. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 423, 104-108.	1.5	47
140	Electroweak baryogenesis. Contemporary Physics, 1998, 39, 177-194.	0.8	8
141	Primordial Magnetic Fields, Anomalous Matter-Antimatter Fluctuations, and Big Bang Nucleosynthesis. Physical Review Letters, 1998, 80, 22-25.	2.9	123
142	Experimental Signatures of Supersymmetric Dark-MatterQ-Balls. Physical Review Letters, 1998, 80, 3185-3188.	2.9	142
143	Primordial Magnetic Fields, Right Electrons, and the Abelian Anomaly. Physical Review Letters, 1997, 79, 1193-1196.	2.9	368
144	Nonperturbative Debye Mass in Finite Temperature QCD. Physical Review Letters, 1997, 79, 3130-3133.	2.9	107

#	Article	IF	CITATIONS
145	Is There a Hot Electroweak Phase Transition atmH≳mW?. Physical Review Letters, 1996, 77, 2887-2890.	2.9	558
146	Results from 3D electroweak phase transition simulations. Nuclear Physics, Section B, Proceedings Supplements, 1996, 47, 705-708.	0.5	5
147	Melting of the Higgs vacuum: conserved numbers at high temperature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 387, 817-822.	1.5	53
148	Electroweak phase transition and the early universe. Nuclear Physics, Section B, Proceedings Supplements, 1995, 37, 86-97.	0.5	0
149	3D physics and the electroweak phase transition: A framework for lattice Monte Carlo analysis. Nuclear Physics B, 1995, 442, 317-363.	0.9	105
150	The electroweak phase transition at. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 336, 494-501.	1.5	68
151	Strong sphalerons and electroweak baryogenesis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 326, 118-124.	1.5	78
152	Baryogenesis in minimal standard model. Nuclear Physics, Section B, Proceedings Supplements, 1994, 35, 62-65.	0.5	0
153	Baryon asymmetry of the Universe in the standard model. Physical Review D, 1994, 50, 774-818.	1.6	174
154	3D physics and the electroweak phase transition: Perturbation theory. Nuclear Physics B, 1994, 425, 67-109.	0.9	222
155	On non-perturbative effects at the high-temperature electroweak phase transition. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 316, 112-120.	1.5	47
156	Baryon asymmetry of the Universe in the minimal standard model. Physical Review Letters, 1993, 70, 2833-2836.	2.9	188
157	Baryon Asymmetry of the Universe in the Minimal Standard Model. Physical Review Letters, 1993, 71, 210-210.	2.9	71
158	A lattice Monte Carlo study of the hot electroweak phase transition. Nuclear Physics B, 1993, 407, 356-372.	0.9	157
159	Parity breaking at high temperature and density. Nuclear Physics B, 1993, 393, 633-657.	0.9	5
160	Sphalerons and baryogenesis. Classical and Quantum Gravity, 1993, 10, S147-S154.	1.5	3
161	StrongCPviolation, electroweak baryogenesis, and axionic dark matter. Physical Review D, 1992, 45, 466-475.	1.6	30
162	Cosmological lower bound on the EDM of the electron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 276, 131-134.	1.5	27

#	Article	IF	Citations
163	Standard model solution of the baryogenesis problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 277, 324-330.	1.5	86
164	Electroweak baryogenesis. A numerical study in $1+1$ dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 275, 395-402.	1.5	16
165	Sphaleron induced baryon number non-conservation. Nuclear Physics, Section B, Proceedings Supplements, 1992, 26, 78-92.	0.5	5
166	Sphalerons and axion dynamics in high-temperature QCD. Physical Review D, 1991, 43, 2027-2035.	1.6	130
167	Sphaleron transitions and baryon asymmetry: A numerical, real-time analysis. Nuclear Physics B, 1991, 353, 346-378.	0.9	160
168	CP-violation and electroweak baryogenesis. Physica Scripta, 1991, T36, 183-193.	1.2	14
169	Spontaneous symmetry breaking versus spontaneous parity violation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 254, 148-152.	1.5	31
170	Why the baryon asymmetry of the universe is $\hat{a}^1/4$ 10 \hat{a}^2 10. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 256, 477-483.	1.5	96
171	Model dependence of the cosmological upper bound on the Higgs-boson mass. Physical Review D, 1991, 43, 369-374.	1.6	81
172	Electroweak baryogenesis and the Higgs boson mass problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 244, 275-278.	1.5	141
173	Lattice simulations of electroweak sphaleron transitions in real time. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 244, 479-487.	1.5	92
174	High-energy anomalous B-non-conservation - phantom or reality?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 242, 493-497.	1.5	7
175	Sphalerons and baryogenesis: Electroweak CP violation at high temperatures. Nuclear Physics B, 1990, 329, 493-518.	0.9	49
176	Sphaleron transitions at finite temperatures. numerical study in (1+1) dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 216, 172-176.	1.5	71
177	Baryon asymmetry generation in the electroweak theory: A lattice study. Nuclear Physics B, 1989, 316, 483-508.	0.9	49
178	Topological transitions at finite temperatures: A real time numerical approach. Nuclear Physics B, 1989, 326, 737-757.	0.9	68
179	Determination of the constantg ωÏѤ from QCD sum rules. Zeitschrift FÃ⅓r Physik C-Particles and Fields, 1988, 38, 467-471.	1.5	6
180	Extra space-time dimensions: Towards a solution to the strong CP-problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 203, 121-124.	1.5	17

#	Article	IF	Citations
181	The statistical theory of anomalous fermion number non-conservation. Nuclear Physics B, 1988, 308, 885-912.	0.9	422
182	Structure of the high temperature gauge ground state and electroweak production of the baryon asymmetry. Nuclear Physics B, 1988, 299, 797-817.	0.9	244
183	Baryon asymmetry of the universe in standard electroweak theory. Nuclear Physics B, 1987, 287, 757-775.	0.9	506
184	Baryon asymmetry of the universe. A Monte Carlo study on the lattice. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 197, 49-54.	1.5	48
185	Anomalous electronweak baryon number non-conservation and GUT mechanism for baryogenesis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 191, 171-173.	1.5	118
186	Bound states of light and heavy quarks in hot hadronic matter. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1987, 36, 267-272.	1.5	3
187	The spectrum of hot hadronic matter and finite-temperature QCD sum rules. Nuclear Physics B, 1986, 268, 220-252.	0.9	186
188	Electroweak bags. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 180, 93-94.	1.5	15
189	Hadronic mass scales and phase transitions in QCD. Il Nuovo Cimento A, 1986, 92, 17-24.	0.2	3
190	Sum rules for SUSY gluodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 154, 275-277.	1.5	2
191	On anomalous electroweak baryon-number non-conservation in the early universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 155, 36-42.	1.5	2,387
192	Coloured scalars and cosmology. Il Nuovo Cimento A, 1984, 82, 35-50.	0.2	2
193	The phenomenology of coloured scalars. Zeitschrift Fýr Physik C-Particles and Fields, 1984, 23, 39-48.	1.5	1
194	The first order quark-hadron phase transition in QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 145, 276-280.	1.5	25
195	Symmetry properties and dynamics in gauge theories with scalar fields. Theoretical and Mathematical Physics(Russian Federation), 1984, 59, 529-544.	0.3	6
196	Do we live inside a domain wall?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 125, 136-138.	1.5	1,096
197	Extra space-time dimensions: Towards a solution to the cosmological constant problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 125, 139-143.	1.5	519
198	A stable proton, oscillations and baryon number non-conservation at energies of about hundred GeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 125, 449-451.	1.5	6

#	Article	IF	CITATIONS
199	Baryon generation and unusual symmetry behaviour at high temperatures. Nuclear Physics B, 1982, 196, 29-43.	0.9	18
200	Phase portrait of SU(5) grand unified model. Zeitschrift Fþr Physik C-Particles and Fields, 1982, 12, 83-93.	1.5	12
201	Phase portrait of SU(5) model. II intermediate phases SU(3)×[U(1)]2 and [SU(2)]2×[U(1)]2. Zeitschrift Fý Physik C-Particles and Fields, 1982, 15, 33-37.	1.5	4
202	Coloured scalars and new hadrons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1982, 117, 252-256.	1.5	12
203	Baryon asymmetry of the universe: Spontaneous or intrinsic B-violation?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 99, 321-324.	1.5	0
204	On the possibility of an experimental search for oscillations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 99, 358-360.	1.5	84
205	Gauge hierarchies and unusual symmetry behaviour at high temperatures. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 105, 159-162.	1.5	13
206	Cosmological constraints on masses and couplings of leptoquarks. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 105, 163-166.	1.5	6
207	Matter-antimatter domains in the universe: A solution of the vacuum walls problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 105, 167-170.	1.5	34
208	Phase picture of the SU(5) grand unified model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1981, 102, 397-400.	1.5	14
209	Integer charge quarks and spontaneously broken color symmetry. Theoretical and Mathematical Physics(Russian Federation), 1981, 47, 373-383.	0.3	3
210	Baryon asymmetry of the universe versus left-right symmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1980, 92, 115-118.	1.5	59
211	Photon condensation in the big bang cosmology and longitudinal background radiation of the universe. Physics Letters, Section A: General, Atomic and Solid State Physics, 1979, 69, 462-464.	0.9	11
212	Baryon asymmetry of the universe in grand unified theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1979, 87, 114-116.	1.5	44
213	Is the electric charge conserved?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1979, 84, 315-318.	1.5	51