Li-Yang Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology, 2020, 354, 107045.	1.1	97
2	Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 2014, 209, 18-26.	1.1	85
3	Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Chinese Geography, 2021, 31, 456-476.	1.5	65
4	Multi-modal deep learning for landform recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 63-75.	4.9	56
5	Landformâ€oriented flowâ€routing algorithm for the dualâ€structure loess terrain based on digital elevation models. Hydrological Processes, 2014, 28, 1756-1766.	1.1	46
6	Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Applied Geography, 2018, 90, 282-292.	1.7	45
7	Chinese progress in geomorphometry. Journal of Chinese Geography, 2017, 27, 1389-1412.	1.5	44
8	Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. Catena, 2019, 177, 114-125.	2.2	44
9	Paleotopographic controls on loess deposition in the Loess Plateau of <scp>China</scp> . Earth Surface Processes and Landforms, 2016, 41, 1155-1168.	1.2	41
10	Extraction of Terraces on the Loess Plateau from High-Resolution DEMs and Imagery Utilizing Object-Based Image Analysis. ISPRS International Journal of Geo-Information, 2017, 6, 157.	1.4	38
11	Automatic recognition of loess landforms using Random Forest method. Journal of Mountain Science, 2017, 14, 885-897.	0.8	35
12	Slope spectrum critical area and its spatial variation in the Loess Plateau of China. Journal of Chinese Geography, 2015, 25, 1452-1466.	1.5	33
13	Integrating topographic knowledge into deep learning for the void-filling of digital elevation models. Remote Sensing of Environment, 2022, 269, 112818.	4.6	31
14	Spatial–temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains. Catena, 2021, 202, 105256.	2.2	29
15	Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models. Science China Earth Sciences, 2014, 57, 1944-1952.	2.3	26
16	Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images. International Journal of Geographical Information Science, 2020, 34, 484-503.	2.2	25
17	Optimized Segmentation Based on the Weighted Aggregation Method for Loess Bank Gully Mapping. Remote Sensing, 2020, 12, 793.	1.8	24
18	Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Physical Geography, 2018, 39, 368-386.	0.6	24

#	Article	IF	CITATIONS
19	Paleotopographic controls on modern gully evolution in the loess landforms of China. Science China Earth Sciences, 2017, 60, 438-451.	2.3	19
20	A new algorithm based on Region Partitioning for Filtering candidate viewpoints of a multiple viewshed. International Journal of Geographical Information Science, 2016, 30, 2171-2187.	2.2	17
21	Extracting check dam areas from highâ€resolution imagery based on the integration of objectâ€based image analysis and deep learning. Land Degradation and Development, 2021, 32, 2303-2317.	1.8	17
22	Mining spatial patterns of food culture in China using restaurant POI data. Transactions in GIS, 2021, 25, 579-601.	1.0	17
23	A peak-cluster assessment method for the identification of upland planation surfaces. International Journal of Geographical Information Science, 2017, 31, 387-404.	2.2	16
24	Topographic Spatial Variation Analysis of Loess Shoulder Lines in the Loess Plateau of China Based on MF-DFA. ISPRS International Journal of Geo-Information, 2017, 6, 141.	1.4	16
25	Drainage basin object-based method for regional-scale landform classification: a case study of loess area in China. Physical Geography, 0, , 1-19.	0.6	16
26	A terrain openness index for the extraction of karst Fenglin and Fengcong landform units from DEMs. Journal of Mountain Science, 2018, 15, 752-764.	0.8	15
27	Classification of Karst Fenglin and Fengcong Landform Units Based on Spatial Relations of Terrain Feature Points from DEMs. Remote Sensing, 2019, 11, 1950.	1.8	13
28	Combined gully profiles for expressing surface morphology and evolution of gully landforms. Frontiers of Earth Science, 2019, 13, 551-562.	0.9	13
29	Detecting Colocation Flow Patterns in the Geographical Interaction Data. Geographical Analysis, 2022, 54, 84-103.	1.9	13
30	A Vector Operation to Extract Second-Order Terrain Derivatives from Digital Elevation Models. Remote Sensing, 2020, 12, 3134.	1.8	12
31	Quantification of Loess Landforms from Three-Dimensional Landscape Pattern Perspective by Using DEMs. ISPRS International Journal of Geo-Information, 2021, 10, 693.	1.4	12
32	Uncertainty of slope length derived from digital elevation models of the Loess Plateau, China. Journal of Mountain Science, 2014, 11, 1169-1181.	0.8	11
33	Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles. Progress in Physical Geography, 2017, 41, 302-324.	1.4	11
34	Modeling the Spatial Formation Mechanism of Poverty-Stricken Counties in China by Using Geographical Detector. Sustainability, 2019, 11, 4752.	1.6	11
35	Quantifying the spatial distribution of sediment transport in an experimental gully system using the morphological method. Earth Surface Processes and Landforms, 2021, 46, 1188-1208.	1.2	11
36	Evolution of the Physical and Social Spaces of â€~Village Resettlement Communities' from the Production of Space Perspective: A Case Study of Qunyi Community in Kunshan. International Journal of Environmental Research and Public Health, 2019, 16, 2980.	1.2	10

#	Article	IF	CITATIONS
37	Quantification of terrain plan concavity and convexity using aspect vectors from digital elevation models. Geomorphology, 2021, 375, 107553.	1.1	10
38	Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Transactions in GIS, 2021, 25, 2438-2454.	1.0	10
39	Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection. Journal of Mountain Science, 2020, 17, 3024-3038.	0.8	10
40	Inference method for cultural diffusion patterns using a field model. Transactions in GIS, 2020, 24, 1578-1601.	1.0	9
41	Mathematical vector framework for gravity-specific land surface curvatures calculation from triangulated irregular networks. ClScience and Remote Sensing, 2022, 59, 590-608.	2.4	9
42	Landform-derived placement of electrical resistivity prospecting for paleotopography reconstruction in the loess landforms of China. Journal of Applied Geophysics, 2016, 131, 1-13.	0.9	8
43	Improved Priorityâ€Flood method for depression filling by redundant calculation optimization in local microâ€relief areas. Transactions in GIS, 2019, 23, 259-274.	1.0	8
44	UAV-Based Terrain Modeling under Vegetation in the Chinese Loess Plateau: A Deep Learning and Terrain Correction Ensemble Framework. Remote Sensing, 2020, 12, 3318.	1.8	7
45	Using vertices of a triangular irregular network to calculate slope and aspect. International Journal of Geographical Information Science, 2022, 36, 382-404.	2.2	7
46	Generating Terrain Data for Geomorphological Analysis by Integrating Topographical Features and Conditional Generative Adversarial Networks. Remote Sensing, 2022, 14, 1166.	1.8	7
47	Landform planation index extracted from DEMs: A case study in ordos platform of China. Chinese Geographical Science, 2016, 26, 314-324.	1.2	6
48	Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models. ISPRS International Journal of Geo-Information, 2018, 7, 136.	1.4	6
49	Scientific attributes and expression methods of geographical boundary. Journal of Chinese Geography, 2022, 32, 1119-1135.	1.5	6
50	Geomorphological divisions of the Tibet Plateau based on topographical feature point groups from DEMs. Annals of GIS, 2014, 20, 245-253.	1.4	4
51	Clustering gully profiles for investigating the spatial variation in landform formation on the Chinese Loess Plateau. Journal of Mountain Science, 2021, 18, 2742-2760.	0.8	4
52	Formation of asymmetrical loess gullies in the northeastern loess plateau of China. Earth Surface Processes and Landforms, 2021, 46, 758-774.	1.2	3
53	Computer-assisted terrain sketch mapping that considers the geomorphological features in a loess landform. Geomorphology, 2020, 364, 107169.	1.1	3
54	Ownership reform and the changing manufacturing landscape in Chinese cities: The case of Wuxi. PLoS ONE, 2017, 12, e0173607.	1.1	2

#	Article	IF	CITATIONS
55	Status analysis of geographic information science major in Chinese higher education. Annals of GIS, 2021, 27, 111-126.	1.4	1
56	Investigation of Loess Landform Inheritance by Using Quantitative Terrain Indexes. Springer Geography, 2019, , 135-168.	0.3	1
57	Clustering stream profiles to understand the geomorphological features and evolution of the Yangtze River by using DEMs. Journal of Chinese Geography, 2021, 31, 1555-1574.	1.5	1
58	A view-tree method to compute viewsheds from digital elevation models. International Journal of Geographical Information Science, 0, , 1-20.	2.2	1
59	Significance of Loess Landform Inheritance. Springer Geography, 2019, , 1-31.	0.3	0
60	Conceptual Model of Loess Landform Inheritance. Springer Geography, 2019, , 47-74.	0.3	0
61	Spatial Variations in Loess Landform Inheritance. Springer Geography, 2019, , 169-204.	0.3	0
62	Reconstruction of the Loess Underlying Paleotopography for Loess Landform Inheritance. Springer Geography, 2019, , 75-133.	0.3	0
63	General Background of the Study Area and Materials. Springer Geography, 2019, , 33-46.	0.3	Ο