Carla T Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403768/publications.pdf

Version: 2024-02-01

430874 454955 3,015 35 18 30 citations h-index g-index papers 35 35 35 3143 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	12.0	1,873
2	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	6.2	180
3	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	15.1	134
4	Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. International Journal of Hygiene and Environmental Health, 2019, 222, 727-737.	4.3	124
5	The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends in Food Science and Technology, 2019, 92, 81-93.	15.1	70
6	Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chemistry, 2018, 239, 132-140.	8.2	66
7	Exposure assessment of Portuguese population to multiple mycotoxins: The human biomonitoring approach. International Journal of Hygiene and Environmental Health, 2019, 222, 913-925.	4.3	66
8	Climate change and the health impact of aflatoxins exposure in Portugal $\hat{a}\in$ an overview. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1610-1621.	2.3	52
9	Portuguese children dietary exposure to multiple mycotoxins – An overview of risk assessment under MYCOMIX project. Food and Chemical Toxicology, 2018, 118, 399-408.	3.6	47
10	Single-compound and cumulative risk assessment of mycotoxins present in breakfast cereals consumed by children from Lisbon region, Portugal. Food and Chemical Toxicology, 2015, 86, 274-281.	3.6	46
11	Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins, 2019, 11, 78.	3.4	44
12	Patulin and ochratoxin A co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food and Chemical Toxicology, 2016, 96, 205-214.	3.6	42
13	Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins, 2018, 10, 342.	3.4	32
14	Patulin in fruit juices: occurrence, bioaccessibility, and risk assessment for Serbian population. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 985-995.	2.3	27
15	Environmental exposures in young adults with declining kidney function in a population at risk of Mesoamerican nephropathy. Occupational and Environmental Medicine, 2019, 76, 920-926.	2.8	27
16	Total mercury in infant food, occurrence and exposure assessment in Portugal. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 151-157.	2.8	25
17	Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomaterials, 2020, 10, 1516.	4.1	21
18	LC-MS/MS methodology for simultaneous determination of patulin and citrinin in urine and plasma applied to a pilot study in colorectal cancer patients. Food and Chemical Toxicology, 2020, 136, 110994.	3.6	19

#	Article	IF	CITATIONS
19	Applicability of In Vitro Methods to Study Patulin Bioaccessibility and Its Effects on Intestinal Membrane Integrity. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 983-992.	2.3	17
20	Building capacity in risk-benefit assessment of foods: Lessons learned from the RB4EU project. Trends in Food Science and Technology, 2019, 91, 541-548.	15.1	13
21	Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020). Toxins, 2020, 12, 513.	3.4	13
22	Burden of osteoporosis and costs associated with human biomonitored cadmium exposure in three European countries: France, Spain and Belgium. International Journal of Hygiene and Environmental Health, 2021, 234, 113747.	4.3	13
23	HBM4EU Chromates Study: Determinants of Exposure to Hexavalent Chromium in Plating, Welding and Other Occupational Settings. International Journal of Environmental Research and Public Health, 2022, 19, 3683.	2.6	13
24	Deoxynivalenol exposure assessment through a modelling approach of food intake and biomonitoring data $\hat{a} \in A$ contribution to the risk assessment of an enteropathogenic mycotoxin. Food Research International, 2021, 140, 109863.	6.2	12
25	Food Consumption Data as a Tool to Estimate Exposure to Mycoestrogens. Toxins, 2020, 12, 118.	3.4	10
26	Selenium Content of Raw and Cooked Marine Species Consumed in Portugal. Food Analytical Methods, 2011, 4, 77-83.	2.6	8
27	Are Data from Mycotoxins' Urinary Biomarkers and Food Surveys Linked? A Review Underneath Risk Assessment. Food Reviews International, 2021, 37, 373-398.	8.4	7
28	RiskBenefit4EU – Partnering to strengthen Riskâ€Benefit Assessment within the EU using a holistic approach. EFSA Supporting Publications, 2019, 16, 1768E.	0.7	3
29	Risk-Benefit Assessment of Cereal-Based Foods Consumed by Portuguese Children Aged 6 to 36 Monthsâ€"A Case Study under the RiskBenefit4EU Project. Nutrients, 2021, 13, 3127.	4.1	3
30	New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Frontiers in Nutrition, 0, 9, .	3.7	3
31	The Usefulness of Human Biomonitoring in the Case of Mycotoxins Exposure Assessment. , 2021, , 176-179.		2
32	earlyMYCO: A Pilot Mother-Child Cohort Study to Assess Early-Life Exposure to Mycotoxins—Challenges and Lessons Learned. International Journal of Environmental Research and Public Health, 2022, 19, 7716.	2.6	2
33	Mycotoxins as Endocrine Disruptors – An Emerging Threat. , 2021, , 180-192.		1
34	Climate Change and Aflatoxins Contamination in the Iberian Peninsula. , 2021 , , $168-175$.		0
35	Nanomaterials in Foods and Human Digestion: An Important Layer in the Assessment of Potential Toxic Effects. Advances in Experimental Medicine and Biology, 2022, 1357, 403-414.	1.6	0

3