
David Caballero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precision biomaterials in cancer theranostics and modelling. Biomaterials, 2022, 280, 121299.	5.7	26
2	Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. Lab on A Chip, 2022, 22, 1093-1125.	3.1	29
3	Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. In Vitro Models, 2022, 1, 119-123.	1.0	2
4	Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851825.	2.0	4
5	The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Advances in Experimental Medicine and Biology, 2022, , 115-138.	0.8	1
6	Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 2021, 9, 4211-4218.	2.9	17
7	Breast tumor-on-chip models: From disease modeling to personalized drug screening. Journal of Controlled Release, 2021, 331, 103-120.	4.8	36
8	Versatile Vessel-on-a-Chip Platform for Studying Key Features of Blood Vascular Tumors. Bioengineering, 2021, 8, 81.	1.6	14
9	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	1.4	11
10	Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials, 2021, 279, 121217.	5.7	17
11	A Microfludic Platform as An In Vitro Model for Biomedical Experimentation - A Cell Migration Study. , 2021, , .		1
12	Trends in biomaterials for three-dimensional cancer modeling. , 2020, , 3-41.		3
13	3D neuroblastoma in vitro models using engineered cell-derived matrices. , 2020, , 107-130.		0
14	Microfluidic systems in cancer research. , 2020, , 331-377.		8
15	Preface. Methods in Cell Biology, 2020, 156, xvii.	0.5	0
16	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	2.3	3
17	Human Microcirculationâ€onâ€Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. Advanced Biology, 2020, 4, e2000045.	3.0	22
18	Collective Dynamics of Focal Adhesions Regulate Direction of Cell Motion. Cell Systems, 2020, 10, 535-542 e4	2.9	17

DAVID CABALLERO

#	Article	IF	CITATIONS
19	Preface. Methods in Cell Biology, 2020, 157, xv.	0.5	Ο
20	Engineering cell-derived matrices with controlled 3D architectures for pathophysiological studies. Methods in Cell Biology, 2020, 156, 161-183.	0.5	5
21	Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. Advances in Experimental Medicine and Biology, 2020, 1230, 43-64.	0.8	12
22	The Biophysics of Cell Migration: Biasing Cell Motion with Feynman Ratchets. The Biophysicist, 2020, 1,	0.1	9
23	Tissue engineering and regenerative medicine research - how can it contribute to fight future pandemics?. , 2020, , 389-416.		1
24	Protrusion membrane pearling emerges during 3D cell division. Physical Biology, 2019, 16, 066009.	0.8	4
25	Peptideâ€Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics, 2019, 2, 1900132.	1.6	33
26	3D biosensors in advanced medical diagnostics of high mortality diseases. Biosensors and Bioelectronics, 2019, 130, 20-39.	5.3	76
27	Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets. ACS Nano, 2018, 12, 7282-7291.	7.3	55
28	Topological Control of Extracellular Matrix Growth: A Native-Like Model for Cell Morphodynamics Studies. ACS Applied Materials & Interfaces, 2017, 9, 4159-4170.	4.0	20
29	Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials, 2017, 149, 98-115.	5.7	155
30	An Interplay between Matrix Anisotropy and Actomyosin Contractility Regulates 3Dâ€Directed Cell Migration. Advanced Functional Materials, 2017, 27, 1702322.	7.8	22
31	Tumour-vessel-on-a-chip models for drug delivery. Lab on A Chip, 2017, 17, 3760-3771.	3.1	68
32	Motion in microfluidic ratchets. Lab on A Chip, 2016, 16, 4477-4481.	3.1	16
33	Ordering Single Cells and Single Embryos in 3D Confinement: A New Device for High Content Screening. Journal of Visualized Experiments, 2016, , .	0.2	4
34	Cells as Active Particles in Asymmetric Potentials: Motility under External Gradients. Biophysical Journal, 2015, 108, 456a.	0.2	3
35	Foreword: Physics of cell migration. Cell Adhesion and Migration, 2015, 9, 325-326.	1.1	2
36	The cell ratchet: Interplay between efficient protrusions and adhesion determines cell motion. Cell Adhesion and Migration, 2015, 9, 327-334.	1.1	25

DAVID CABALLERO

#	Article	IF	CITATIONS
37	Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends in Cell Biology, 2015, 25, 815-827.	3.6	54
38	Cells as Active Particles in Asymmetric Potentials: Motility under External Gradients. Biophysical Journal, 2014, 107, 1513-1522.	0.2	36
39	Protrusion Fluctuations Direct Cell Motion. Biophysical Journal, 2014, 107, 34-42.	0.2	60
40	Synthetic polyamines promote rapid lamellipodial growth by regulating actin dynamics. Nature Communications, 2013, 4, 2165.	5.8	21
41	Directing polypyrrole growth by chemical micropatterns: A study of high-throughput well-ordered arrays of conductive 3D microrings. Sensors and Actuators B: Chemical, 2013, 177, 1003-1009.	4.0	16
42	Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method. Cell Adhesion and Migration, 2012, 6, 471-475.	1.1	2
43	Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Analytica Chimica Acta, 2012, 720, 43-48.	2.6	62
44	Optical Gratings Coated with Thin Si3N4 Layer for Efficient Immunosensing by Optical Waveguide Lightmode Spectroscopy. Biosensors, 2012, 2, 114-126.	2.3	25
45	Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences. Electrochimica Acta, 2012, 74, 123-129.	2.6	21
46	Sharp High-Aspect-Ratio AFM Tips Fabricated by a Combination of Deep Reactive Ion Etching and Focused Ion Beam Techniques. Journal of Nanoscience and Nanotechnology, 2010, 10, 497-501.	0.9	9
47	Multi-analytic grating coupler biosensor for differential binding analysis. Sensors and Actuators B: Chemical, 2010, 144, 413-417.	4.0	17
48	Versatile micropipette technology based on deep reactive ion etching and anodic bonding for biological applications. Journal of Micromechanics and Microengineering, 2009, 19, 105013.	1.5	14
49	Direct Patterning of Antiâ€Human Serum Albumin Antibodies on Aldehydeâ€Terminated Silicon Nitride Surfaces for HSA Protein Detection. Small, 2009, 5, 1531-1534.	5.2	30
50	Submerged Nanocontact Printing (SnCP) of Thiols. Journal of Nanoscience and Nanotechnology, 2009, 9, 6478-6482.	0.9	4
51	Development of Urease/Layered Double Hydroxides Nanohybrid Materials for the Urea Detection: Synthesis, Analytical and Catalytic Characterizations. Sensor Letters, 2009, 7, 676-682.	0.4	4
52	Novel Anionophores for Biosensor Applications: Nano Characterisation of SAMs Based on Amphiphilic Imidazolium Protophanes and Cyclophanes on Gold Surfaces. Sensor Letters, 2009, 7, 757-764.	0.4	3
53	Characterisation of a Cr(VI) Sensitive Polysiloxane Membrane by X-ray Photoelectron Spectrometry and Atomic Force Microscopy. Sensor Letters, 2009, 7, 995-1000.	0.4	3
54	Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication. Journal of Micromechanics and Microengineering, 2008, 18, 075021.	1.5	11

DAVID CABALLERO

#	Article	IF	CITATIONS
55	Electropolymerization of nano-dimensioned polypyrrole micro-ring arrays on gold substrates prepared using submerged micro-contact printing. Nanotechnology, 2007, 18, 485301.	1.3	34
56	Gold Surface Functionalization and Patterning for Specific Immobilization of Olfactory Receptors Carried by Nanosomes. Analytical Chemistry, 2007, 79, 3280-3290.	3.2	74
57	Atomic Force Microscopy Characterization of a Microcontact Printed, Selfâ€Assembled Thiol Monolayer for Use in Biosensors. Analytical Letters, 2006, 39, 1721-1734.	1.0	18
58	Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. In Vitro Models, 0, , .	1.0	0