Chao-Wei Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mix Design and Engineering Properties of Fiber-Reinforced Pervious Concrete Using Lightweight Aggregates. Applied Sciences (Switzerland), 2022, 12, 524.	2.5	10
2	Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials, 2022, 15, 1785.	2.9	6
3	Evaluation of Pavement Roughness by the International Roughness Index for Sustainable Pavement Construction in New Taipei City. Sustainability, 2022, 14, 6982.	3.2	4
4	Modeling Uniaxial Bond Stress–Slip Behavior of Reinforcing Bars Embedded in Concrete with Different Strengths. Materials, 2021, 14, 783.	2.9	5
5	Application of the Taguchi Method for Optimizing the Process Parameters of Producing Controlled Low-Strength Materials by Using Dimension Stone Sludge and Lightweight Aggregates. Sustainability, 2021, 13, 5576.	3.2	9
6	Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams after Exposure to High Temperatures. Materials, 2021, 14, 5400.	2.9	4
7	Modeling Local Bond Stress–Slip Relationships of Reinforcing Bars Embedded in Concrete with Different Strengths. Materials, 2020, 13, 3701.	2.9	16
8	Research on the International Roughness Index Threshold of Road Rehabilitation in Metropolitan Areas: A Case Study in Taipei City. Sustainability, 2020, 12, 10536.	3.2	12
9	Research on Improving Concrete Durability by Biomineralization Technology. Sustainability, 2020, 12, 1242.	3.2	11
10	Residual Mechanical Properties of Fiber-Reinforced Lightweight Aggregate Concrete after Exposure to Elevated Temperatures. Applied Sciences (Switzerland), 2020, 10, 3519.	2.5	12
11	Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures. Materials, 2020, 13, 770.	2.9	49
12	Mix Design and Mechanical Properties of High-Performance Pervious Concrete. Materials, 2019, 12, 2577.	2.9	24
13	Partial Replacement of Fine Aggregate Using Water Purification Sludge in Producing CLSM. Sustainability, 2019, 11, 1351.	3.2	5
14	Self-Healing Concrete by Biological Substrate. Materials, 2019, 12, 4099.	2.9	41
15	Properties of Fired Bricks Incorporating TFT-LCD Waste Glass Powder with Reservoir Sediments. Sustainability, 2018, 10, 2503.	3.2	14
16	Engineering Properties of Self-Consolidating Lightweight Aggregate Concrete and Its Application in Prestressed Concrete Members. Sustainability, 2018, 10, 142.	3.2	9
17	Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments. Materials, 2017, 10, 1294.	2.9	25
18	Paper Sludge Reuse in Lightweight Aggregates Manufacturing. Materials, 2016, 9, 876.	2.9	14

Chao-Wei Tang

#	Article	IF	CITATIONS
19	A clonal selection algorithm model for daily rainfall data prediction. Water Science and Technology, 2014, 70, 1641-1647.	2.5	0
20	Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments. Computers and Concrete, 2014, 13, 325-342.	0.7	11
21	Producing synthetic lightweight aggregates from reservoir sediments. Construction and Building Materials, 2012, 28, 387-394.	7.2	84
22	Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cement and Concrete Composites, 2011, 33, 292-300.	10.7	71
23	Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Construction and Building Materials, 2010, 24, 46-55.	7.2	93