
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403481/publications.pdf Version: 2024-02-01

Хим-Ім 7нн

#	Article	IF	CITATIONS
1	Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chemistry of Materials, 2013, 25, 2146-2153.	3.2	250
2	A Near-Infrared-Fluorescent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin. Angewandte Chemie - International Edition, 2006, 45, 3150-3154.	7.2	241
3	Water-Soluble Mitochondria-Specific Ytterbium Complex with Impressive NIR Emission. Journal of the American Chemical Society, 2011, 133, 20120-20122.	6.6	141
4	Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. International Journal of Nanomedicine, 2017, Volume 12, 7375-7391.	3.3	137
5	Synthesis, structure, reactivity and photoluminescence of lanthanide(III) monoporphyrinate complexes. Coordination Chemistry Reviews, 2007, 251, 2386-2399.	9.5	120
6	New Co(OH) ₂ /CdS nanowires for efficient visible light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 5282-5287.	5.2	114
7	Water-Stable Nickel Metal–Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. Journal of the American Chemical Society, 2022, 144, 2747-2754.	6.6	109
8	Red-Emissive Ruthenium-Containing Carbon Dots for Bioimaging and Photodynamic Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 869-876.	2.4	108
9	A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 2018, 6, 17698-17705.	5.2	102
10	Porphyrin-Implanted Carbon Nanodots for Photoacoustic Imaging and in Vivo Breast Cancer Ablation. ACS Applied Bio Materials, 2018, 1, 110-117.	2.3	102
11	Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13231-13239.	4.0	97
12	Conformational engineering of co-sensitizers to retard back charge transfer for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11553.	5.2	94
13	Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. Journal of Materials Chemistry B, 2016, 4, 6366-6372.	2.9	92
14	Molecular Engineering of Simple Phenothiazineâ€Based Dyes To Modulate Dye Aggregation, Charge Recombination, and Dye Regeneration in Highly Efficient Dye ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 6300-6308.	1.7	88
15	Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Optical Materials, 2018, 77, 258-263.	1.7	88
16	Synthesis, characterization, physical properties, and blue electroluminescent device applications of phenanthroimidazole derivatives containing anthracene or pyrene moiety. Dyes and Pigments, 2014, 101, 93-102.	2.0	82
17	Design and Synthesis of Nearâ€Infrared Emissive Lanthanide Complexes Based on Macrocyclic Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 4651-4674.	1.0	80
18	New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance. Journal of Power Sources, 2013, 243, 253-259.	4.0	74

#	Article	IF	CITATIONS
19	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	3.7	72
20	Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 170, 194-200.	2.5	72
21	New phosphorescent platinum(ii) Schiff base complexes for PHOLED applications. Journal of Materials Chemistry, 2012, 22, 16448.	6.7	69
22	Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catalysis Today, 2015, 258, 96-102.	2.2	67
23	Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of Materials Chemistry C, 2018, 6, 9111-9118.	2.7	67
24	Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics. Chemical Communications, 2015, 51, 14439-14442.	2.2	66
25	A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Scientific Reports, 2015, 5, 13543.	1.6	64
26	Efficient nondoped blue organic light-emitting diodes based on phenanthroimidazole-substituted anthracene derivatives. Organic Electronics, 2012, 13, 3050-3059.	1.4	63
27	Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy. Nanoscale Research Letters, 2018, 13, 357.	3.1	63
28	Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 278, 344-351.	4.0	62
29	Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(ii). Dalton Transactions, 2005, , 3235.	1.6	61
30	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30176-30183.	4.0	61
31	Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose, 2018, 25, 377-389.	2.4	60
32	Europium Complexes of a Novel Ethylenedioxythiophene-Derivatized Bis(pyrazolyl)pyridine Ligand Exhibiting Efficient Lanthanide Sensitization. Inorganic Chemistry, 2010, 49, 2035-2037.	1.9	59
33	Folic acid-modified Prussian blue/polydopamine nanoparticles as an MRI agent for use in targeted chemo/photothermal therapy. Biomaterials Science, 2019, 7, 2996-3006.	2.6	59
34	Pure white-light and colour-tuning of Eu ³⁺ –Gd ³⁺ -containing metallopolymer. Chemical Communications, 2016, 52, 3713-3716.	2.2	54
35	Red/Nearâ€Infrared Emissive Metalloporphyrinâ€Based Nanodots for Magnetic Resonance Imagingâ€Guided Photodynamic Therapy In Vivo. Particle and Particle Systems Characterization, 2018, 35, 1800208.	1.2	54
36	Reactivity of aqua coordinated monoporphyrinate lanthanide complexes: synthetic, structural and photoluminescent studies of lanthanide porphyrinate dimers. Dalton Transactions, 2004, , 4064.	1.6	53

#	Article	IF	CITATIONS
37	Co-sensitization of 3D bulky phenothiazine-cored photosensitizers with planar squaraine dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 13848-13855.	5.2	52
38	Lightâ€Harvesting Ytterbium(III)–Porphyrinate–BODIPY Conjugates: Synthesis, Excitationâ€Energy Transfer, and Twoâ€Photonâ€Induced Nearâ€Infraredâ€Emission Studies. Chemistry - A European Journal, 2013, 19, 739-74	1.7 8.	51
39	Phosphorescent Cu(<scp>i</scp>) complexes based on bis(pyrazol-1-yl-methyl)-pyridine derivatives for organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 138-146.	2.7	51
40	Bulky dendritic triarylamine-based organic dyes for efficient co-adsorbent-free dye-sensitized solar cells. Journal of Power Sources, 2013, 237, 195-203.	4.0	49
41	Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 6283-6291.	4.0	49
42	A white phosphorescent coordination polymer with Cu ₂ 1 ₂ alternating units linked by benzo-18-crown-6. Dalton Transactions, 2014, 43, 12463-12466.	1.6	45
43	Aâ€Dâ€A Type Small Molecules Based on Boron Dipyrromethene for Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1513-1518.	1.7	45
44	A visible-near-infrared absorbing A–π ₂ –D–π ₁ –D–π ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	5.2	45
45	Synthesis, Structures and Optical Power Limiting of Some Transition Metal and Lanthanide Monoporphyrinate Complexes Containing Electron-Rich Diphenylamino Substituents. European Journal of Inorganic Chemistry, 2007, 2007, 2004-2013.	1.0	44
46	A near-infrared fluorescent chemodosimeter for silver(I) ion based on an expanded porphyrin. Tetrahedron Letters, 2008, 49, 1843-1846.	0.7	43
47	Co(III)-Porphyrin-Mediated Highly Regioselective Ring-Opening of Terminal Epoxides with Alcohols and Phenols. ACS Catalysis, 2011, 1, 489-492.	5.5	43
48	Ln(III) chelates-functionalized carbon quantum dots: Synthesis, optical studies and multimodal bioimaging applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 272-280.	2.5	42
49	Effects of various π-conjugated spacers in thiadiazole[3,4-c]pyridine-cored panchromatic organic dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 3103-3112.	5.2	41
50	A facile method for scalable synthesis of ultrathin g-C ₃ N ₄ nanosheets for efficient hydrogen production. Journal of Materials Chemistry A, 2018, 6, 18252-18257.	5.2	40
51	Designâ€ŧoâ€Device Approach Affords Panchromatic Co‣ensitized Solar Cells. Advanced Energy Materials, 2019, 9, 1802820.	10.2	40
52	New platinum(II) one-armed Schiff base complexes for blue and orange PHOLEDs applications. Organic Electronics, 2017, 42, 153-162.	1.4	39
53	New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose. Optical Materials, 2017, 73, 747-753.	1.7	38
54	Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coordination Chemistry Reviews, 2022, 459, 214390.	9.5	38

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Photophysical Properties of Some Heterodimetallic Bisporphyrins of Ytterbium and Transition Metals – Enhancement and Lifetime Extension of Yb3+ Emission by Transition-Metal Porphyrin Sensitization. European Journal of Inorganic Chemistry, 2007, 2007, 3365-3374.	1.0	37
56	High-detectivity panchromatic photodetectors for the near infrared region based on a dimeric porphyrin small molecule. Journal of Materials Chemistry C, 2018, 6, 3341-3345.	2.7	37
57	Enhancing photocatalytic hydrogen evolution by intramolecular energy transfer in naphthalimide conjugated porphyrins. Chemical Communications, 2018, 54, 11614-11617.	2.2	36
58	Enhanced Photocatalytic Hydrogen Evolution of Carbon Quantum Dot Modified 1D Protonated Nanorods of Graphitic Carbon Nitride. ACS Applied Nano Materials, 2018, 1, 5337-5344.	2.4	34
59	Efficient blue organic light-emitting diodes based on triphenylimidazole substituted anthracene derivatives. Organic Electronics, 2015, 21, 9-18.	1.4	32
60	Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production. Applied Surface Science, 2020, 499, 143755.	3.1	32
61	Synthesis and crystal structure of the first lanthanide complex of N-confused porphyrin with an Ε2agostic C–H interaction. Chemical Communications, 2005, , 1022-1024.	2.2	30
62	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	2.5	30
63	Bis[di(4-methoxyphenyl)amino]carbazole-capped indacenodithiophenes as hole transport materials for highly efficient perovskite solar cells: the pronounced positioning effect of a donor group on the cell performance. Journal of Materials Chemistry A, 2019, 7, 10200-10205.	5.2	30
64	Side-Chain Engineering of Benzodithiophene-Bridged Dimeric Porphyrin Donors for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41506-41514.	4.0	30
65	New simple panchromatic dyes based on thiadiazolo[3,4-c]pyridine unit for dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 196-203.	2.0	29
66	A recent overview of porphyrin-based π-extended small molecules as donors and acceptors for high-performance organic solar cells. Materials Chemistry Frontiers, 2021, 5, 7119-7133.	3.2	29
67	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	5.2	29
68	Highlyâ€Transparent and Trueâ€Colored Semitransparent Indoor Photovoltaic Cells. Small Methods, 2020, 4, 2000136.	4.6	28
69	Highly active oligomeric Co(salen) catalysts for the asymmetric synthesis of α-aryloxy or α-alkoxy alcohols via kinetic resolution of terminal epoxides. Journal of Molecular Catalysis A, 2010, 329, 1-6.	4.8	27
70	Synthesis, Structure, and Photophysical Properties of Some Gadolinium(III) Porphyrinate Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 3314-3320.	1.0	27
71	Constructing New n-Type, Ambipolar, and p-Type Aggregation-Induced Blue Luminogens by Gradually Tuning the Proportion of Tetrahphenylethene and Diphenylphophine Oxide. Journal of Physical Chemistry C, 2014, 118, 8610-8616.	1.5	27
72	Chemically driven supramolecular self-assembly of porphyrin donors for high-performance organic solar cells. Journal of Materials Chemistry A, 2018, 6, 14675-14680.	5.2	27

#	Article	IF	CITATIONS
73	Facile Preparation of Phthalocyanine-Based Nanodots for Photoacoustic Imaging and Photothermal Cancer Therapy In Vivo. ACS Biomaterials Science and Engineering, 2020, 6, 5230-5239.	2.6	27
74	Self-Assembled Naphthalimide-Substituted Porphyrin Nanowires for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 7040-7046.	2.4	27
75	Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 3521.	2.7	26
76	Iridium motif linked porphyrins for efficient light-driven hydrogen evolution <i>via</i> triplet state stabilization of porphyrin. Journal of Materials Chemistry A, 2020, 8, 3005-3010.	5.2	26
77	Donor–acceptor covalent organic frameworks of nickel(<scp>ii</scp>) porphyrin for selective and efficient CO ₂ reduction into CO. Dalton Transactions, 2020, 49, 15587-15591.	1.6	26
78	Synthesis, Characterization, and DNAâ€Binding and â€Photocleavage Properties of Waterâ€Soluble Lanthanide Porphyrinate Complexes. Chemistry - A European Journal, 2011, 17, 7041-7052.	1.7	25
79	Kinetic Evaluation of Cooperative [Co(salen)] Catalysts in the Hydrolytic Kinetic Resolution of <i>rac</i> â€Epichlorohydrin. ChemCatChem, 2010, 2, 1252-1259.	1.8	24
80	The first example of Tb3-containing metallopolymer-type hybrid materials with efficient and high color-purity green luminescence. Dalton Transactions, 2015, 44, 6229-6241.	1.6	24
81	Hydrocarbonsâ€Driven Crystallization of Polymer Semiconductors for Lowâ€Temperature Fabrication of Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1706372.	7.8	23
82	Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Organic Electronics, 2019, 65, 156-161.	1.4	23
83	Largely Color-Tuning Prompt and Delayed Fluorescence: Dinuclear Cu(I) Halide Complexes with <i>tert</i> -Amines and Phosphines. Inorganic Chemistry, 2021, 60, 4841-4851.	1.9	22
84	Reactivity of Cationic Lanthanide(III) Monoporphyrinates towards Anionic Cyanometallates – Preparation, Crystal Structure, and Luminescence Properties of Cyanidoâ€Bridged Di―and Trinuclear d–f Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 3515-3523.	1.0	21
85	A thiophene bridged naphthalimide–porphyrin complex with enhanced activity and stability in photocatalytic H ₂ evolution. Sustainable Energy and Fuels, 2020, 4, 2675-2679.	2.5	21
86	Synthesis, Structure and Spectroscopic Properties of Lanthanide Complexes ofNâ€Confused Porphyrins. European Journal of Inorganic Chemistry, 2008, 2008, 3151-3162.	1.0	20
87	Cellulose nanopaper with controllable optical haze and high efficiency ultraviolet blocking for flexible optoelectronics. Cellulose, 2019, 26, 2201-2208.	2.4	20
88	Cocatalyst-free Photocatalytic Hydrogen Evolution with Simple Heteroleptic Iridium(III) Complexes. ACS Applied Energy Materials, 2021, 4, 3945-3951.	2.5	20
89	Coupling of a new porphyrin photosensitizer and cobaloxime cocatalyst for highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 20645-20652.	5.2	20
90	Ethylenedioxythiophene incorporated diketopyrrolopyrrole conjugated polymers for high-performance organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 4260-4266.	2.7	19

#	Article	IF	CITATIONS
91	A novel chemosensor for the distinguishable detections of Cu2+ and Hg2+ by off–on fluorescence and ratiometric UV–visible absorption. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119365.	2.0	19
92	Low sublimation temperature cesium pivalate complex as an efficient electron injection material for organic light-emitting diode devices. Organic Electronics, 2011, 12, 1957-1962.	1.4	18
93	Irreversible Solvatochromic Zn-Nanopaper Based on Zn(II) Terpyridine Assembly and Oxidized Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2018, 6, 11614-11623.	3.2	18
94	Water soluble Ln(III)-based metallopolymer with AIE-active and ACQ-effect lanthanide behaviors for detection of nanomolar pyrophosphate. Sensors and Actuators B: Chemical, 2019, 282, 999-1007.	4.0	18
95	Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRI—guided photodynamic/photothermal combined treatment. Nanotechnology, 2020, 31, 135101.	1.3	18
96	Porphyrin Grafting on a Mercapto-Equipped Zr(IV)-Carboxylate Framework Enhances Photocatalytic Hydrogen Production. Inorganic Chemistry, 2020, 59, 12643-12649.	1.9	18
97	Acetylene bridged porphyrin–monophthalocyaninato ytterbium(iii) hybrids with strong two-photon absorption and high singlet oxygen quantum yield. Dalton Transactions, 2012, 41, 4536.	1.6	17
98	Efficient and tunable phosphorescence of new platinum(II) complexes based on the donor–π–acceptor Schiff bases. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 316, 12-18.	2.0	17
99	Aggregation-induced white emission of lanthanide metallopolymer and its coating on cellulose nanopaper for white-light softening. Journal of Materials Chemistry C, 2020, 8, 2205-2210.	2.7	17
100	Enhanced cocatalyst-free photocatalytic H ₂ evolution by the synergistic AIE and FRET for an Ir-complex conjugated porphyrin. Journal of Materials Chemistry A, 2022, 10, 4440-4445.	5.2	17
101	Effect of Counter-Ion on Recycle of Polymer Resin Supported Co(III)-Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin. Topics in Catalysis, 2010, 53, 1063-1065.	1.3	16
102	Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Biomaterials Science, 2020, 8, 1875-1884.	2.6	16
103	2D Metal–Organic Framework Cu ₃ (HHTT) ₂ Films for Broadband Photodetectors from Ultraviolet to Midâ€Infrared. Advanced Materials, 2022, 34, .	11.1	16
104	Synthesis, structural characterization and photophysical studies of luminescent Cu(I) heteroleptic complexes based on dipyridylamine. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 97-103.	2.0	12
105	Long-lived excited states of platinum(<scp>ii</scp>)-porphyrins for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13402-13409.	5.2	12
106	Synthesis of new mer,trans-rhodium(III) hydrido-bis(acetylide) complexes: Structure of mer,trans-[(PMe3)3Rh(CC–C6H4-4-NMe2)2H]. Inorganica Chimica Acta, 2006, 359, 2859-2863.	1.2	11
107	<i>β</i> â€Functionalized Imidazoleâ€Fused Porphyrinâ€Donorâ€Based Dyes: Effect of Ï€â€Linker and Acceptor o Optoelectronic and Photovoltaic Properties. ChemistrySelect, 2018, 3, 2558-2564.	0.7	11
108	Enhanced light-harvesting of benzodithiophene conjugated porphyrin electron donors in organic solar cells. Journal of Materials Chemistry C, 2019, 7, 380-386.	2.7	11

#	Article	IF	CITATIONS
109	Diketopyrrolopyrrole linked porphyrin dimers for visible-near-infrared photoresponsive nonfullerene organic solar cells. Materials Advances, 2020, 1, 2520-2525.	2.6	11
110	Synthesis and two-photon absorption properties of unsymmetrical metallosalophen complexes. Polyhedron, 2013, 49, 121-128.	1.0	10
111	Synthesis, crystal structure and photophysical study of luminescent three-coordinate cuprous bromide complexes based on pyrazole derivatives. Journal of Coordination Chemistry, 2016, 69, 926-933.	0.8	10
112	A Simple Strategy to Fabricate Phthalocyanine-Encapsulated Nanodots for Magnetic Resonance Imaging and Antitumor Phototherapy. ACS Applied Bio Materials, 2020, 3, 3681-3689.	2.3	10
113	Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 7473-7478.	2.5	10
114	Luminescent monomeric and polymeric cuprous halide complexes with 1,2-bis(3,5-dimethylpyrazol-1-ylmethyl)-benzene as ligand. Inorganic Chemistry Communication, 2015, 58, 113-116.	1.8	9
115	Mononuclear copper(I) bromide complexes chelated with bis(pyrazol-1-ylmethyl)-pyridine ligands: Structures, electronic properties and solid state photoluminescence. Journal of Luminescence, 2016, 177, 82-87.	1.5	9
116	Highly Semitransparent Indoor Nonfullerene Organic Solar Cells Based on Benzodithiopheneâ€Bridged Porphyrin Dimers. Energy Technology, 2022, 10, .	1.8	9
117	Palladium(II) and Platinum(II) Porphyrin Donors for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 4916-4925.	2.5	9
118	Luminescent Electropolymerizable Ruthenium Complexes and Corresponding Conducting Metallopolymers. Macromolecules, 2018, 51, 8217-8228.	2.2	8
119	Tuning electronic properties of molecular acceptor-ï€-porphyrin-ï€-acceptor donors via ï€-linkage structural engineering. Organic Electronics, 2019, 73, 146-151.	1.4	8
120	Gd (III) DOTAâ€Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Advanced Materials Interfaces, 2020, 7, 2000713.	1.9	7
121	An ultrasonic wave-assisted synthesis of meso-amidinophenyl substituted porphyrins. Tetrahedron Letters, 2008, 49, 2114-2118.	0.7	6
122	Effects of peripheral substitutions on the singlet oxygen quantum yields of monophthalocyaninato ytterbium(<scp>iii</scp>) complexes. RSC Advances, 2015, 5, 22294-22299.	1.7	6
123	Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(ii)-acetylide inorganic–organic hybrids. Dalton Transactions, 2015, 44, 306-315.	1.6	6
124	Dual-nodal PMMA-supported Eu 3+ -containing metallopolymer with high color-purity red luminescence. Inorganic Chemistry Communication, 2015, 60, 51-53.	1.8	5
125	Two new bioactive diterpenes identified from Isodon interruptus. Bioorganic Chemistry, 2020, 95, 103512.	2.0	5
126	Synthesis of New Monoporphyrinato Lanthanide Complexes for Potential Use in Optical Limiting. Chemistry Letters, 2006, 35, 802-803.	0.7	4

#	Article	IF	CITATIONS
127	Multidimensional Perovskite for Visible Light Driven Hydrogen Production in Aqueous HI Solution. ACS Applied Energy Materials, 2022, 5, 207-213.	2.5	4
128	Thiophene–Perylenediimide Bridged Dimeric Porphyrin Donors Based on the Donor–Acceptor–Donor Structure for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5, 7287-7296.	2.5	4
129	Design and synthesis of binuclear Co-salen catalysts for the hydrolytic kinetic resolution of epoxides. Catalysis Communications, 2015, 68, 101-104.	1.6	3
130	Panchromatic Terthiophenyl-benzodithiophene Conjugated Porphyrin Donor for Efficient Organic Solar Cells. Journal of Materials Chemistry C, 0, , .	2.7	3
131	NO3â^induced Salen-based Zn2Yb2 complex with good NIR luminescent property. Inorganic Chemistry Communication, 2015, 61, 181-183.	1.8	2
132	[24]Crown-8-modified carbon nanotubes for templating metal deposition and active materials for pseudocapacitors. Materials Advances, 2021, 2, 236-240.	2.6	2
133	Structure influence of alkyl chains of thienothiophene-porphyrins on the performance of organic solar cells. Materials Reports Energy, 2021, 1, 100066.	1.7	2
134	Effects of Side-Chain Engineering with the S Atom in Thieno[3,2-b]thiophene-porphyrin to Obtain Small-Molecule Donor Materials for Organic Solar Cells. Molecules, 2021, 26, 6134.	1.7	2
135	Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. Materials, 2022, 15, 502.	1.3	2
136	Correction to Cocatalyst-free Photocatalytic Hydrogen Evolution with Simple Heteroleptic Iridium(III) Complexes. ACS Applied Energy Materials, 2021, 4, 6374-6374.	2.5	0