Marsha Wills-Karp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1403187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IMMUNOLOGIC BASIS OF ANTIGEN-INDUCED AIRWAY HYPERRESPONSIVENESS. Annual Review of Immunology, 1999, 17, 255-281.	9.5	993
2	The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Reviews Immunology, 2001, 1, 69-75.	10.6	718
3	Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature, 2009, 457, 585-588.	13.7	666
4	Interleukin-13 in asthma pathogenesis. Immunological Reviews, 2004, 202, 175-190.	2.8	572
5	Signal Transducer and Activator of Transcription Factor 6 (Stat6)-deficient Mice Are Protected from Antigen-induced Airway Hyperresponsiveness and Mucus Production. Journal of Experimental Medicine, 1998, 187, 939-948.	4.2	416
6	Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunology, 2000, 1, 221-226.	7.0	365
7	CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. Journal of Experimental Medicine, 2005, 202, 1549-1561.	4.2	364
8	IL-4 and IL-13 signaling in allergic airway disease. Cytokine, 2015, 75, 68-78.	1.4	364
9	A Role for Immune Complexes in Enhanced Respiratory Syncytial Virus Disease. Journal of Experimental Medicine, 2002, 196, 859-865.	4.2	339
10	Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. American Journal of Pathology, 2006, 169, 566-583.	1.9	336
11	Elevated cytokine levels in children with autism spectrum disorder. Journal of Neuroimmunology, 2006, 172, 198-205.	1.1	327
12	Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nature Immunology, 2004, 5, 388-392.	7.0	321
13	Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nature Immunology, 2010, 11, 928-935.	7.0	298
14	Importance of Cytokines in Murine Allergic Airway Disease and Human Asthma. Journal of Immunology, 2010, 184, 1663-1674.	0.4	246
15	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	13.7	244
16	Untangling the Complex Web of IL-4– and IL-13–Mediated Signaling Pathways. Science Signaling, 2008, 1, pe55.	1.6	231
17	IL-12/IL-13 axis in allergic asthma. Journal of Allergy and Clinical Immunology, 2001, 107, 9-18.	1.5	211
18	A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. Journal of Clinical Investigation, 2006, 116, 783-796.	3.9	194

#	Article	IF	CITATIONS
19	Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. Journal of Experimental Medicine, 2012, 209, 607-622.	4.2	192
20	Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan–dependent pathways. Journal of Allergy and Clinical Immunology, 2009, 123, 612-618.	1.5	175
21	Interleukin-13 in asthma. Current Opinion in Pulmonary Medicine, 2003, 9, 21-27.	1.2	153
22	Time to draw breath: asthma-susceptibility genes are identified. Nature Reviews Genetics, 2004, 5, 376-387.	7.7	146
23	Amb a 1–linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. Journal of Allergy and Clinical Immunology, 2002, 109, 455-462.	1.5	145
24	The Potential Role of Interleukin-17 in Severe Asthma. Current Allergy and Asthma Reports, 2011, 11, 388-394.	2.4	138
25	Quantitative Trait Loci Controlling Allergen-Induced Airway Hyperresponsiveness in Inbred Mice. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 537-545.	1.4	133
26	Attenuation of Lung Inflammation and Fibrosis in Interferon- γ –Deficient Mice after Intratracheal Bleomycin. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 545-555.	1.4	122
27	The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma. Molecular Immunology, 2004, 41, 123-131.	1.0	122
28	Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease. Nature, 2009, 458, 1039-1042.	13.7	115
29	Ambient Urban Baltimore Particulate-induced Airway Hyperresponsiveness and Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1438-1443.	2.5	112
30	Intrauterine Inflammation and Maternal Exposure to Ambient PM _{2.5} during Preconception and Specific Periods of Pregnancy: The Boston Birth Cohort. Environmental Health Perspectives, 2016, 124, 1608-1615.	2.8	109
31	Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. Journal of Experimental Medicine, 2005, 202, 1563-1573.	4.2	106
32	IL-4 induces IL-13–independent allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2006, 118, 410-419.	1.5	106
33	Bone Marrow Dendritic Cells from Mice with an Altered Microbiota Provide Interleukin 17A-Dependent Protection against Entamoeba histolytica Colitis. MBio, 2014, 5, e01817.	1.8	106
34	Partial restoration of Tâ€cell function in aged mice by <i>in vitro</i> blockade of the PDâ€1/ PDâ€L1 pathway. Aging Cell, 2010, 9, 785-798.	3.0	105
35	BIOMEDICINE: Eosinophils in Asthma: Remodeling a Tangled Tale. Science, 2004, 305, 1726-1729.	6.0	101
36	Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma. Proceedings of the American Thoracic Society, 2007, 4, 247-251.	3.5	94

#	Article	IF	CITATIONS
37	Interleukin-13 in asthma pathogenesis. Current Allergy and Asthma Reports, 2004, 4, 123-131.	2.4	93
38	Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice. PLoS ONE, 2008, 3, e3879.	1.1	89
39	Complement Factor 3 Mediates Particulate Matter–Induced Airway Hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 413-418.	1.4	88
40	Organ Culture with Proinflammatory Cytokines Reproduces Impairment of the <i>l²</i> -Adrenoceptor-mediated Relaxation in Tracheas of a Guinea Pig Antigen Model. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 153-159.	1.4	84
41	Altered gene expression profiles in nasal respiratory epithelium reflect stable versus acute childhood asthma. Journal of Allergy and Clinical Immunology, 2005, 115, 243-251.	1.5	81
42	Foxa2 Programs Th2 Cell-Mediated Innate Immunity in the Developing Lung. Journal of Immunology, 2010, 184, 6133-6141.	0.4	81
43	A Critical Role for C5L2 in the Pathogenesis of Experimental Allergic Asthma. Journal of Immunology, 2010, 185, 6741-6752.	0.4	79
44	The Genetics of Allergen-Induced Airway Hyperresponsiveness in Mice. American Journal of Respiratory and Critical Care Medicine, 1997, 156, S89-S96.	2.5	78
45	Caffeine Modulates TNF-α Production by Cord Blood Monocytes: The Role of Adenosine Receptors. Pediatric Research, 2009, 65, 203-208.	1.1	78
46	Indoor particulate matter increases asthma morbidity in children with non-atopic and atopic asthma. Annals of Allergy, Asthma and Immunology, 2011, 106, 308-315.	0.5	75
47	Source of Biomass Cooking Fuel Determines Pulmonary Response to Household Air Pollution. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 538-548.	1.4	71
48	Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. Journal of Cell Biology, 2015, 208, 613-627.	2.3	71
49	Blocking Lymphocyte Trafficking with FTY720 Prevents Inflammation-Sensitized Hypoxic–Ischemic Brain Injury in Newborns. Journal of Neuroscience, 2014, 34, 16467-16481.	1.7	69
50	Usefulness and optimization of mouse models of allergic airway disease. Journal of Allergy and Clinical Immunology, 2008, 121, 603-606.	1.5	68
51	Selective stimulation of IL-4 receptor on smooth muscle induces airway hyperresponsiveness in mice. Journal of Experimental Medicine, 2011, 208, 853-867.	4.2	68
52	A Protective Role for C5a in the Development of Allergic Asthma Associated with Altered Levels of B7-H1 and B7-DC on Plasmacytoid Dendritic Cells. Journal of Immunology, 2009, 182, 5123-5130.	0.4	65
53	Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nature Immunology, 2020, 21, 756-765.	7.0	63
54	Differential control of CD4 ⁺ Tâ€cell subsets by the PDâ€1/PDâ€L1 axis in a mouse model of allergic asthma. European Journal of Immunology, 2015, 45, 1019-1029.	1.6	62

#	Article	IF	CITATIONS
55	Differences in Candidate Gene Association between European Ancestry and African American Asthmatic Children. PLoS ONE, 2011, 6, e16522.	1.1	61
56	Allergen-specific pattern recognition receptor pathways. Current Opinion in Immunology, 2010, 22, 777-782.	2.4	60
57	Expression and Regulation of Small Proline-Rich Protein 2 in Allergic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 428-435.	1.4	59
58	IL-17A enhances IL-13 activity by enhancing IL-13–induced signal transducer and activator of transcription 6 activation. Journal of Allergy and Clinical Immunology, 2017, 139, 462-471.e14.	1.5	59
59	Particulate Matter–Induced Airway Hyperresponsiveness Is Lymphocyte Dependent. Environmental Health Perspectives, 2010, 118, 640-646.	2.8	55
60	A TLR2 Agonist in German Cockroach Frass Activates MMP-9 Release and Is Protective against Allergic Inflammation in Mice. Journal of Immunology, 2009, 183, 3400-3408.	0.4	53
61	Unique and overlapping gene expression patterns driven by IL-4 and IL-13 in the mouse lung. Journal of Allergy and Clinical Immunology, 2009, 123, 795-804.e8.	1.5	53
62	Dysregulated invertebrate tropomyosin–dectin-1 interaction confers susceptibility to allergic diseases. Science Immunology, 2018, 3, .	5.6	51
63	Suppressive Effect of IL-4 on IL-13-Induced Genes in Mouse Lung. Journal of Immunology, 2005, 174, 4630-4638.	0.4	47
64	TLR2-Mediated Activation of Neutrophils in Response to German Cockroach Frass. Journal of Immunology, 2008, 180, 6317-6324.	0.4	44
65	Complement regulates inhalation tolerance at the dendritic cell/T cell interface. Molecular Immunology, 2007, 44, 44-56.	1.0	43
66	IL-1 Receptor antagonist as a positional candidate gene in a murine model of allergic asthma. Immunogenetics, 2006, 58, 851-855.	1.2	41
67	IL-13 receptor α2 contributes to development of experimental allergic asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 951-958.e6.	1.5	41
68	The gene encoding interleukin-13: a susceptibility locus for asthma and related traits. Respiratory Research, 2000, 1, 19-23.	1.4	40
69	Polymorphisms in the novel gene acyloxyacyl hydroxylase (AOAH) are associated with asthma and associated phenotypes. Journal of Allergy and Clinical Immunology, 2006, 118, 70-77.	1.5	40
70	Differences in Expression, Affinity, and Function of Soluble (s)IL-4Rα and sIL-13Rα2 Suggest Opposite Effects on Allergic Responses. Journal of Immunology, 2007, 179, 6429-6438.	0.4	38
71	A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 254-261.e6.	1.5	37
72	New insights into the role of the complement pathway in allergy and asthma. Current Allergy and Asthma Reports, 2005, 5, 362-369.	2.4	34

#	Article	IF	CITATIONS
73	Matrix metalloproteinase 8 contributes to solubilization of IL-13 receptor $\hat{1}\pm2$ in vivo. Journal of Allergy and Clinical Immunology, 2008, 122, 625-632.	1.5	33
74	Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. Journal of Clinical Investigation, 2015, 126, 571-584.	3.9	33
75	Distinct Roles of Cdc42 in Thymopoiesis and Effector and Memory T Cell Differentiation. PLoS ONE, 2011, 6, e18002.	1.1	33
76	Downregulation of glutathione S-transferase pi in asthma contributes to enhanced oxidative stress. Journal of Allergy and Clinical Immunology, 2011, 128, 539-548.	1.5	32
77	Innate lymphoid cells wield a double-edged sword. Nature Immunology, 2011, 12, 1025-1027.	7.0	32
78	C3a is required for ILC2 function in allergic airway inflammation. Mucosal Immunology, 2018, 11, 1653-1662.	2.7	32
79	Placental malperfusion in response to intrauterine inflammation and its connection to fetal sequelae. PLoS ONE, 2019, 14, e0214951.	1.1	32
80	Assessment of cellular profile and lung function with repeated bronchoalveolar lavage in individual mice. Physiological Genomics, 2000, 2, 29-36.	1.0	30
81	Identification of <i>Cd101</i> as a Susceptibility Gene for <i>Novosphingobium aromaticivorans</i> -Induced Liver Autoimmunity. Journal of Immunology, 2011, 187, 337-349.	0.4	30
82	Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice. Molecular Metabolism, 2013, 2, 171-183.	3.0	29
83	Trophic Slime, Allergic Slime. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 637-639.	1.4	28
84	Role of Serum Amyloid A, Granulocyte-Macrophage Colony-Stimulating Factor, and Bone Marrow Granulocyte-Monocyte Precursor Expansion in Segmented Filamentous Bacterium-Mediated Protection from Entamoeba histolytica. Infection and Immunity, 2016, 84, 2824-2832.	1.0	28
85	Chitin Checking — Novel Insights into Asthma. New England Journal of Medicine, 2004, 351, 1455-1457.	13.9	27
86	Preterm Birth with Childhood Asthma: The Role of Degree of Prematurity and Asthma Definitions. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 520-523.	2.5	27
87	Building Healthy Community Environments: A Public Health Approach. Public Health Reports, 2018, 133, 35S-43S.	1.3	27
88	A dual role for complement in allergic asthma. Current Opinion in Pharmacology, 2007, 7, 283-289.	1.7	26
89	<i>In Utero</i> Exposure to Heavy Metals and Trace Elements and Childhood Blood Pressure in a U.S. Urban, Low-Income, Minority Birth Cohort. Environmental Health Perspectives, 2021, 129, 67005.	2.8	26
90	Complement and IL-12: yin and yang. Microbes and Infection, 2001, 3, 109-119.	1.0	25

#	Article	IF	CITATIONS
91	Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice. BMC Immunology, 2009, 10, 33.	0.9	23
92	Mechanisms of modulation of cytokine release by human cord blood monocytes exposed to high concentrations of caffeine. Pediatric Research, 2016, 80, 101-109.	1.1	21
93	Nrf2 regulates gene-environment interactions in an animal model of intrauterine inflammation: Implications for preterm birth and prematurity. Scientific Reports, 2017, 7, 40194.	1.6	21
94	Interleukin 13 and the evolution of asthma therapy. American Journal of Clinical and Experimental Immunology, 2012, 1, 20-27.	0.2	21
95	Preferential Activation of Nuclear Factor of Activated T Cells c Correlates with Mouse Strain Susceptibility to Allergic Responses and Interleukin-4 Gene Expression. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 58-65.	1.4	20
96	Haploinsufficiency for Stard7 Is Associated with Enhanced Allergic Responses in Lung and Skin. Journal of Immunology, 2015, 194, 5635-5643.	0.4	18
97	Characterization of a novel PMA-inducible pathway of interleukin-13 gene expression in T cells. Immunology, 2006, 117, 29-37.	2.0	16
98	In utero exposure to mercury and childhood overweight or obesity: counteracting effect of maternal folate status. BMC Medicine, 2019, 17, 216.	2.3	15
99	Effects of age on muscarinic agonist-induced contraction and IP accumulation in airway smooth muscle. Life Sciences, 1991, 49, 1039-1045.	2.0	14
100	Understanding the Origin of Asthma and its Relationship to Breastfeeding. Advances in Experimental Medicine and Biology, 2004, 554, 171-191.	0.8	14
101	New Twist on an Ancient Innate Immune Pathway. Immunity, 2013, 39, 1000-1002.	6.6	13
102	Atorvastatin Affects Interleukin-2 Signaling by Altering the Lipid Raft Enrichment of the Interleukin-2 Receptor β Chain. Journal of Investigative Medicine, 2005, 53, 322-328.	0.7	12
103	Neutrophil ghosts worsen asthma. Science Immunology, 2018, 3, .	5.6	10
104	New perspectives on the regulation of type II inflammation in asthma. F1000Research, 2017, 6, 1014.	0.8	10
105	Asthma genetics: not for the TIMid?. Nature Immunology, 2001, 2, 1095-1096.	7.0	9
106	I-Tim-izing the pathways of counter-regulation. Nature Immunology, 2003, 4, 1050-1052.	7.0	9
107	At last — linking ORMDL3 polymorphisms, decreased sphingolipid synthesis, and asthma susceptibility. Journal of Clinical Investigation, 2020, 130, 604-607.	3.9	8
108	Histamine-releasing factor: a promising therapeutic target for food allergy. Journal of Clinical Investigation, 2017, 127, 4238-4241.	3.9	7

#	Article	IF	CITATIONS
109	Equity and diversity in academic medicine: a perspective from the JCI editors. Journal of Clinical Investigation, 2019, 129, 3974-3977.	3.9	6
110	A metabolome-wide association study of in utero metal and trace element exposures with cord blood metabolome profile: Findings from the Boston Birth Cohort. Environment International, 2022, 158, 106976.	4.8	4
111	A Nonlinear Relation Between Maternal Red Blood Cell Manganese Concentrations and Child Blood Pressure at Age 6–12 y: A Prospective Birth Cohort Study. Journal of Nutrition, 2021, 151, 570-578.	1.3	3
112	Allergy and hypersensitivity. Current Opinion in Immunology, 2010, 22, 775-776.	2.4	1
113	Targeting PDâ€1 or ICOS pathways does not rescue decreased CD3â€induced proliferation of aged T cells. FASEB Journal, 2008, 22, 663.28.	0.2	0
114	Placenta Growth Factor Links the IL-13 Response and the Leukotriene Pathway to Augment Airway Hyper-Responsiveness. Blood, 2015, 126, 977-977.	0.6	0
115	Editorial: Activation of Innate Immunity by Allergens and Allergenic Sources. Frontiers in Allergy, 2021, 2, 800929.	1.2	0