
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1402843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CryoEM analysis of small plant biocatalysts at sub-2â€Ã resolution. Acta Crystallographica Section D: Structural Biology, 2022, 78, 113-123.	1.1	1
2	An Unusual Aspartic Acid Cluster in the Reovirus Attachment Fiber $\ddot{I}f1$ Mediates Stability at Low pH and Preserves Trimeric Organization. Journal of Virology, 2022, , e0033122.	1.5	1
3	Towards an understanding of oleate hydratases and their application in industrial processes. Microbial Cell Factories, 2022, 21, 58.	1.9	13
4	Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of Î^cadinol. Microbial Cell Factories, 2022, 21, 64.	1.9	9
5	Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nature Communications, 2022, 13, 2349.	5.8	4
6	Fluorine-induced polarity increases inhibitory activity of BPTI towards chymotrypsin. RSC Chemical Biology, 2022, 3, 773-782.	2.0	8
7	Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase Ï• Science, 2021, 371, .	6.0	78
8	A skipping rope translocation mechanism in a widespread family of DNA repair helicases. Nucleic Acids Research, 2021, 49, 504-518.	6.5	7
9	A Structural View on the Stereospecificity of Plant Borneolâ€₹ype Dehydrogenases. ChemCatChem, 2021, 13, 2262-2277.	1.8	9
10	Large-scale ratcheting in a bacterial DEAH/RHA-type RNA helicase that modulates antibiotics susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
11	Exchange catalysis by tapasin exploits conserved and allele-specific features of MHC-I molecules. Nature Communications, 2021, 12, 4236.	5.8	20
12	Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis. Molecular Cell, 2020, 79, 1024-1036.e5.	4.5	41
13	Towards a sustainable generation of pseudopterosin-type bioactives. Green Chemistry, 2020, 22, 6033-6046.	4.6	9
14	The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. Journal of the American Chemical Society, 2020, 142, 21562-21574.	6.6	20
15	A Snu114–GTP–Prp8 module forms a relay station for efficient splicing in yeast. Nucleic Acids Research, 2020, 48, 4572-4584.	6.5	2
16	Conformational Plasticity of HLA-B27 Molecules Correlates Inversely With Efficiency of Negative T Cell Selection. Frontiers in Immunology, 2020, 11, 179.	2.2	6
17	Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Computational and Structural Biotechnology Journal, 2020, 18, 1819-1829.	1.9	3
18	A Conserved Kinase-Based Body-Temperature Sensor Globally Controls Alternative Splicing and Gene Expression. Molecular Cell, 2020, 78, 57-69.e4.	4.5	76

#	Article	IF	CITATIONS
19	Understanding the role of active site residues in CotB2 catalysis using a cluster model. Beilstein Journal of Organic Chemistry, 2020, 16, 50-59.	1.3	11
20	The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nature Communications, 2020, 11, 6418.	5.8	32
21	RIM-binding protein couples synaptic vesicle recruitment to release sites. Journal of Cell Biology, 2020, 219, .	2.3	26
22	Metal-triggered conformational reorientation of a self-peptide bound to a disease-associated HLA-B*27 subtype. Journal of Biological Chemistry, 2019, 294, 13269-13279.	1.6	8
23	Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein Journal of Organic Chemistry, 2019, 15, 2355-2368.	1.3	17
24	Exon Inclusion Modulates Conformational Plasticity and Autoinhibition of the Intersectin 1 SH3A Domain. Structure, 2019, 27, 977-987.e5.	1.6	4
25	Structural basis for the function of SuhB as a transcription factor in ribosomal RNA synthesis. Nucleic Acids Research, 2019, 47, 6488-6503.	6.5	15
26	Increased versatility despite reduced molecular complexity: evolution, structure and function of metazoan splicing factor PRPF39. Nucleic Acids Research, 2019, 47, 5867-5879.	6.5	7
27	Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor. Molecular Cell, 2019, 74, 143-157.e5.	4.5	86
28	Ketonization of Proline Residues in the Peptide Chains of Actinomycins by a 4â€Oxoproline Synthase. ChemBioChem, 2018, 19, 706-715.	1.3	10
29	<i>Rhodococcus erythropolis</i> Oleate Hydratase: a New Member in the Oleate Hydratase Family Tree—Biochemical and Structural Studies. ChemCatChem, 2018, 10, 407-414.	1.8	29
30	Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nature Communications, 2018, 9, 3971.	5.8	57
31	Tetracyanocorannulene – an Easily Accessible and Strongly Electronâ€Đeficient Compound. European Journal of Organic Chemistry, 2018, 2018, 6338-6342.	1.2	9
32	Molecular insights into antibiotic resistance - how a binding protein traps albicidin. Nature Communications, 2018, 9, 3095.	5.8	32
33	Bacterial Polysaccharide Specificity of the Pattern Recognition Receptor Langerin Is Highly Species-dependent. Journal of Biological Chemistry, 2017, 292, 862-871.	1.6	33
34	Internal Dynamics of the 3-Pyrroline- <i>N</i> -Oxide Ring in Spin-Labeled Proteins. Journal of Physical Chemistry Letters, 2017, 8, 1113-1117.	2.1	2
35	Structural basis for λN-dependent processive transcription antitermination. Nature Microbiology, 2017, 2, 17062.	5.9	58
36	Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Physical Chemistry Chemical Physics, 2017, 19, 20723-20734.	1.3	5

#	Article	IF	CITATIONS
37	Increased Conformational Flexibility of HLA–B*27 Subtypes Associated With Ankylosing Spondylitis. Arthritis and Rheumatology, 2016, 68, 1172-1182.	2.9	36
38	Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microbial Cell Factories, 2016, 15, 86.	1.9	9
39	Tracking Transient Conformational States of T4 Lysozyme at Room Temperature Combining X-ray Crystallography and Site-Directed Spin Labeling. Journal of the American Chemical Society, 2016, 138, 12868-12875.	6.6	13
40	Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel–vesicle coupling. Nature Neuroscience, 2016, 19, 1311-1320.	7.1	166
41	Combining Single Crystal Electron Paramagnetic Resonance and X-Ray Crystallography to Study the Orientation and Dynamics of MTSSL Spin Labels in T4 Lysozyme. Biophysical Journal, 2015, 108, 616a.	0.2	0
42	Fluorine teams up with water to restore inhibitor activity to mutant BPTI. Chemical Science, 2015, 6, 5246-5254.	3.7	32
43	Structures of <i>Drosophila melanogaster</i> Rab2 and Rab3 bound to GMPPNP. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 34-40.	0.4	5
44	Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nature Communications, 2015, 6, 8362.	5.8	51
45	Detailed Structure–Function Correlations of <i>Bacillus subtilis</i> Acetolactate Synthase. ChemBioChem, 2015, 16, 110-118.	1.3	20
46	A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. ELife, 2015, 4, .	2.8	26
47	Entrapment of DNA in an intersubunit tunnel system of a single-stranded DNA-binding protein. Nucleic Acids Research, 2014, 42, 6698-6708.	6.5	15
48	RNA Specificity and Regulation of Catalysis in the Eukaryotic Polynucleotide Kinase Clp1. Molecular Cell, 2014, 54, 975-986.	4.5	23
49	Cyclolization of D-Lysergic Acid Alkaloid Peptides. Chemistry and Biology, 2014, 21, 146-155.	6.2	45
50	Production of Macrocyclic Sesqui―and Diterpenes in Heterologous Microbial Hosts: A Systems Approach to Harness Nature's Molecular Diversity. ChemCatChem, 2014, 6, 1142-1165.	1.8	11
51	The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1528-1537.	2.5	48
52	Drep-2 is a novel synaptic protein important for learning and memory. ELife, 2014, 3, .	2.8	39
53	Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics, 2013, 65, 157-172.	1.2	27
54	Comparative biophysical characterization of chicken β2-microglobulin. Biophysical Chemistry, 2012, 167, 26-35.	1.5	7

#	Article	lF	CITATIONS
55	HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. European Journal of Cell Biology, 2012, 91, 274-286.	1.6	24
56	Influence of inflammationâ€related changes on conformational characteristics of HLAâ€B27 subtypes as detected by IR spectroscopy. FEBS Journal, 2011, 278, 1713-1727.	2.2	18
57	Loss of recognition by crossâ€reactive T cells and its relation to a Câ€terminusâ€induced conformational reorientation of an HLAâ€B*2705â€bound peptide. Protein Science, 2011, 20, 278-290.	3.1	5
58	The P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation. PLoS ONE, 2011, 6, e29139.	1.1	33
59	HLA–B27 heavy chains distinguished by a micropolymorphism exhibit differential flexibility. Arthritis and Rheumatism, 2010, 62, 978-987.	6.7	34
60	Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts. Rna, 2010, 16, 2205-2217.	1.6	7
61	Structure of a Classical MHC Class I Molecule That Binds "Non-Classical―Ligands. PLoS Biology, 2010, 8, e1000557.	2.6	41
62	Crystal structure of the EndoG/EndoGI complex: mechanism of EndoG inhibition. Nucleic Acids Research, 2009, 37, 7312-7320.	6.5	29
63	Implications of Structural and Thermodynamic Studies of HLA-B27 Subtypes Exhibiting Differential Association with Ankylosing Spondylitis. Advances in Experimental Medicine and Biology, 2009, 649, 177-195.	0.8	32
64	HLA-B27 Subtypes Differentially Associated with Disease Exhibit Conformational Differences in Solution. Journal of Molecular Biology, 2008, 376, 798-810.	2.0	53
65	Modeling of variant copies of subunit D1 in the structure of photosystem II from <i>Thermosynechococcus elongatus</i> . Biological Chemistry, 2008, 389, 609-617.	1.2	35
66	Snapshots of the RNA Processing Factor SCAF8 Bound to Different Phosphorylated Forms of the Carboxyl-terminal Domain of RNA Polymerase II. Journal of Biological Chemistry, 2008, 283, 22659-22669.	1.6	55
67	Molecular and Structural Characterization of the PezAT Chromosomal Toxin-Antitoxin System of the Human Pathogen Streptococcus pneumoniae. Journal of Biological Chemistry, 2007, 282, 19606-19618.	1.6	103
68	Function of two Î ² -carotenes near the D1 and D2 proteins in photosystem II dimers. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 79-87.	0.5	30
69	Lipids in photosystem II: Interactions with protein and cofactors. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 509-519.	0.5	120
70	Structure of full-length transcription regulator CcpA in the apo form. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 732-736.	1.1	10
71	Structure of the transcription regulator CcpA fromLactococcus lactis. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 431-436.	2.5	7
72	Structure of the Mn4–Ca cluster as derived from X-ray diffraction. Photosynthesis Research, 2007, 92, 389-405.	1.6	35

#	Article	IF	CITATIONS
73	How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9855-9860.	3.3	104
74	Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster. Science, 2006, 314, 821-825.	6.0	782
75	Energetics of a Possible Proton Exit Pathway for Water Oxidation in Photosystem II. Biochemistry, 2006, 45, 2063-2071.	1.2	167
76	Cationic State of Accessory Chlorophyll and Electron Transfer through Pheophytin to Plastoquinone in Photosystem II. Angewandte Chemie - International Edition, 2006, 45, 1964-1965.	7.2	21
77	Conformational Dimorphism of Self-peptides and Molecular Mimicry in a Disease-associated HLA-B27 Subtype. Journal of Biological Chemistry, 2006, 281, 2306-2316.	1.6	49
78	Towards complete cofactor arrangement in the 3.0 à resolution structure of photosystem II. Nature, 2005, 438, 1040-1044.	13.7	1,801
79	A cartilage-derived self peptide presented by HLA-B27 molecules? Comment on the article by Atagunduz et al. Arthritis and Rheumatism, 2005, 52, 2581-2582.	6.7	3
80	Cyanobacterial Photosystem II at 3.2 à resolution – the plastoquinone binding pockets. Photosynthesis Research, 2005, 84, 153-159.	1.6	50
81	The Antenna System of Photosystem II From Thermosynechococcus elongatus at 3.2 Ã Resolution. Photosynthesis Research, 2005, 86, 175-184.	1.6	36
82	Purification, crystallization and preliminary X-ray diffraction analysis of the human major histocompatibility antigen HLA-B*2703 complexed with a viral peptide and with a self-peptide. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 372-374.	0.7	4
83	Preliminary X-ray diffraction analysis of crystals from the recombinantly expressed human major histocompatibility antigen HLA-B*2704 in complex with a viral peptide and with a self-peptide. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 939-941.	0.7	7
84	X-ray diffraction analysis of crystals from the human major histocompatibility antigen HLA-B*2706 in complex with a viral peptide and with a self-peptide. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 1097-1099.	0.7	7
85	X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12047-12052.	3.3	585
86	Redox Potentials of Chlorophylls in the Photosystem II Reaction Centerâ€. Biochemistry, 2005, 44, 4118-4124.	1.2	80
87	Thermostability and Ca2+Binding Properties of Wild Type and Heterologously Expressed PsbO Protein from Cyanobacterial Photosystem IIâ€. Biochemistry, 2005, 44, 4691-4698.	1.2	22
88	Tuning electron transfer by ester-group of chlorophylls in bacterial photosynthetic reaction center. FEBS Letters, 2005, 579, 712-716.	1.3	20
89	Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 147-157.	0.5	144
90	Crystal structure of Homo sapiens protein hp14.5. Proteins: Structure, Function and Bioinformatics, 2004, 54, 797-800.	1.5	42

#	Article	IF	CITATIONS
91	Crystal structure of cyanobacterial photosystem II at 3.2 Ã resolution: a closer look at the Mn-cluster. Physical Chemistry Chemical Physics, 2004, 6, 4733-4736.	1.3	290
92	Functional Role of Cα–H⋯O Hydrogen Bonds Between Transmembrane α-Helices in Photosystem I. Journal of Molecular Biology, 2003, 328, 737-747.	2.0	31
93	Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1337-1345.	1.8	44