
## Luigi Bubacco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1402576/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF         | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 1  | Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson's disease-like<br>phenotype. Molecular Therapy, 2022, 30, 1465-1483.                                                              | 3.7        | 9         |
| 2  | The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.                                                        | 1.1        | 7         |
| 3  | Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for<br>Parkinson's disease. Journal of Neuroinflammation, 2022, 19, 50.                                                          | 3.1        | 26        |
| 4  | The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in<br>Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.                                                                 | 2.5        | 19        |
| 5  | Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. International<br>Journal of Molecular Sciences, 2022, 23, 398.                                                                    | 1.8        | 30        |
| 6  | LRRK2 as a target for modulating immune system responses. Neurobiology of Disease, 2022, 169, 105724.                                                                                                                | 2.1        | 11        |
| 7  | Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta<br>Neuropathologica, 2022, 144, 81-106.                                                                              | 3.9        | 22        |
| 8  | Waterâ€Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for<br>Neuromelanin of Human Brain <i>Locus Coeruleus</i> . Angewandte Chemie - International Edition,<br>2022, 61, . | 7.2        | 2         |
| 9  | Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia,<br>2021, 69, 681-696.                                                                                        | 2.5        | 32        |
| 10 | Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte<br>Chemie - International Edition, 2021, 60, 5173-5178.                                                                   | 7.2        | 9         |
| 11 | Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte<br>Chemie, 2021, 133, 5233-5238.                                                                                          | 1.6        | 1         |
| 12 | Ditopic Chelators of Dicopper Centers for Enhanced Tyrosinases Inhibition. Chemistry - A European<br>Journal, 2021, 27, 4384-4393.                                                                                   | 1.7        | 6         |
| 13 | <scp>α‣ynuclein</scp> evokes <scp>NLRP3</scp> inflammasomeâ€mediated <scp>IL</scp> â€1β secretion f<br>primary human microglia. Glia, 2021, 69, 1413-1428.                                                           | rom<br>2.5 | 58        |
| 14 | Patients Stratification Strategies to Optimize the Effectiveness of Scavenging Biogenic Aldehydes:<br>Towards a Neuroprotective Approach for Parkinson's Disease. Current Neuropharmacology, 2021, 19,<br>1618-1639. | 1.4        | 9         |
| 15 | Parkinson's Disease–Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance.<br>Molecular Neurobiology, 2021, 58, 3119-3140.                                                                   | 1.9        | 54        |
| 16 | Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson's disease. Journal of Neurochemistry, 2021, 158, 833-836.                                                                | 2.1        | 5         |
| 17 | Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's<br>Disease. International Journal of Molecular Sciences, 2021, 22, 6469.                                       | 1.8        | 17        |
| 18 | Alpha-synuclein pathology and enteric glia in advanced Parkinson's disease: A study from gastrointestinal biopsies. Journal of the Neurological Sciences, 2021, 429, 119460.                                         | 0.3        | 2         |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comprehensive Structural and Thermodynamic Analysis of Prefibrillar WT α-Synuclein and Its G51D,<br>E46K, and A53T Mutants by a Combination of Small-Angle X-ray Scattering and Variational Bayesian<br>Weighting. Journal of Chemical Information and Modeling, 2020, 60, 5265-5281. | 2.5 | 6         |
| 20 | COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. Npj<br>Parkinson's Disease, 2020, 6, 18.                                                                                                                                                | 2.5 | 120       |
| 21 | Immunization therapies for Parkinson's disease: state of the art and considerations for future clinical trials. Expert Opinion on Investigational Drugs, 2020, 29, 685-695.                                                                                                           | 1.9 | 21        |
| 22 | Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent<br>Aggregation of Tau Protein. Angewandte Chemie, 2020, 132, 6669-6673.                                                                                                            | 1.6 | 2         |
| 23 | Unsaturated Fatty Acid-Induced Conformational Transitions and Aggregation of the Repeat Domain of<br>Tau. Molecules, 2020, 25, 2716.                                                                                                                                                  | 1.7 | 15        |
| 24 | Semisynthetic Modification of Tau Protein with Di-Ubiquitin Chains for Aggregation Studies.<br>International Journal of Molecular Sciences, 2020, 21, 4400.                                                                                                                           | 1.8 | 20        |
| 25 | Copper Ions and Parkinson's Disease: Why Is Homeostasis So Relevant?. Biomolecules, 2020, 10, 195.                                                                                                                                                                                    | 1.8 | 107       |
| 26 | Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent<br>Aggregation of Tau Protein. Angewandte Chemie - International Edition, 2020, 59, 6607-6611.                                                                                     | 7.2 | 24        |
| 27 | Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of<br>Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 68.                                                                                                           | 1.7 | 56        |
| 28 | Alpha-synuclein and neuroinflammation in Parkinson's disease. , 2020, , 431-446.                                                                                                                                                                                                      |     | 1         |
| 29 | Fibrils of α-Synuclein Abolish the Affinity of Cu <sup>2+</sup> -Binding Site to His50 and Induce Hopping of Cu <sup>2+</sup> lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.                                                                                        | 1.9 | 12        |
| 30 | Neuronal Proteins as Targets of 3-Hydroxykynurenine: Implications in Neurodegenerative Diseases. ACS<br>Chemical Neuroscience, 2019, 10, 3731-3739.                                                                                                                                   | 1.7 | 8         |
| 31 | Impaired dopamine metabolism in Parkinson's disease pathogenesis. Molecular Neurodegeneration,<br>2019, 14, 35.                                                                                                                                                                       | 4.4 | 187       |
| 32 | Determination of ATP, ADP, and AMP Levels by Reversed-Phase High-Performance Liquid<br>Chromatography in Cultured Cells. Methods in Molecular Biology, 2019, 1925, 223-232.                                                                                                           | 0.4 | 20        |
| 33 | Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells. Neurotoxicity Research, 2019, 36, 746-755.                                                                                                             | 1.3 | 4         |
| 34 | Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with α-synuclein fibrils. Neurobiology of Disease, 2019, 129, 67-78.                                                              | 2.1 | 53        |
| 35 | Ceramides in Parkinson's Disease: From Recent Evidence to New Hypotheses. Frontiers in Neuroscience,<br>2019, 13, 330.                                                                                                                                                                | 1.4 | 41        |
| 36 | Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria<br>dysfunction. Life Science Alliance, 2019, 2, e201900392.                                                                                                                                   | 1.3 | 22        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Human Molecular<br>Genetics, 2018, 27, 1618-1629.                                                                    | 1.4 | 28        |
| 38 | Synapsin III is a key component of αâ€ <b>s</b> ynuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018,<br>28, 875-888.                                                                     | 2.1 | 37        |
| 39 | Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Molecular<br>Neurobiology, 2018, 55, 8754-8763.                                                                   | 1.9 | 53        |
| 40 | <scp>USP</scp> 14 inhibition corrects an <i>inÂvivo</i> model of impaired mitophagy. EMBO Molecular<br>Medicine, 2018, 10, .                                                                             | 3.3 | 69        |
| 41 | Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4.<br>Journal of Neuroinflammation, 2018, 15, 297.                                                     | 3.1 | 33        |
| 42 | Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in<br>an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639. | 3.9 | 53        |
| 43 | Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson's Disease. , 2018, 9, 716.                                                                                                       |     | 42        |
| 44 | Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for<br>Preferential Neurodegeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2018, 9, 2849-2858.    | 1.7 | 42        |
| 45 | Impacts of increased α-synuclein on clathrin-mediated endocytosis at synapses: implications for neurodegenerative diseases. Neural Regeneration Research, 2018, 13, 647.                                 | 1.6 | 16        |
| 46 | DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Scientific<br>Reports, 2017, 7, 40699.                                                                          | 1.6 | 107       |
| 47 | Cross-talk between LRRK2 and PKA: implication for Parkinson's disease?. Biochemical Society Transactions, 2017, 45, 261-267.                                                                             | 1.6 | 31        |
| 48 | GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Human Molecular<br>Genetics, 2017, 26, 2747-2767.                                                                   | 1.4 | 67        |
| 49 | Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin<br>Analogues Suitable for Modeling Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 501-512.         | 1.7 | 40        |
| 50 | Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Archives of Biochemistry and Biophysics, 2017, 627, 46-55.                   | 1.4 | 11        |
| 51 | Molecular Insights and Functional Implication of LRRK2 Dimerization. Advances in Neurobiology, 2017, 14, 107-121.                                                                                        | 1.3 | 12        |
| 52 | Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in<br>G2019S LRRK2 mice. Acta Neuropathologica Communications, 2017, 5, 22.                                    | 2.4 | 73        |
| 53 | High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.<br>Biophysical Journal, 2017, 113, 1685-1696.                                                          | 0.2 | 16        |
| 54 | Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiology of<br>Disease, 2017, 108, 65-72.                                                                         | 2.1 | 74        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 2-Hydroxypyridine- <i>N</i> -oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS<br>Medicinal Chemistry Letters, 2017, 8, 55-60.                                                     | 1.3 | 38        |
| 56 | Metal lons, Dopamine and Oxidaitive Stress in Parkinson's Disease. Impact, 2017, 2017, 9-11.                                                                                                       | 0.0 | 1         |
| 57 | α-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling. Frontiers<br>in Cellular Neuroscience, 2017, 11, 388.                                               | 1.8 | 34        |
| 58 | PAK6 Phosphorylates 14-3-3Î <sup>3</sup> to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular<br>Neuroscience, 2017, 10, 417.                                                 | 1.4 | 46        |
| 59 | Protective effects of superoxide dismutation activity in genetic models of Parkinson's disease.<br>Parkinsonism and Related Disorders, 2016, 22, e88.                                              | 1.1 | Ο         |
| 60 | LRRK2 deficiency impacts ceramide metabolism in brain. Biochemical and Biophysical Research<br>Communications, 2016, 478, 1141-1146.                                                               | 1.0 | 50        |
| 61 | α-Synuclein is a Novel Microtubule Dynamase. Scientific Reports, 2016, 6, 33289.                                                                                                                   | 1.6 | 79        |
| 62 | LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its<br>ATPase activity and SNARE complex disassembling rate. Molecular Neurodegeneration, 2016, 11, 1. | 4.4 | 128       |
| 63 | Entrapment and characterization of functional allosteric conformers of hemocyanin in sol–gel<br>matrices. RSC Advances, 2016, 6, 16868-16881.                                                      | 1.7 | 0         |
| 64 | Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity.<br>Journal of Biological Chemistry, 2016, 291, 9257-9267.                                     | 1.6 | 56        |
| 65 | Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Research<br>Reviews, 2016, 26, 62-71.                                                                 | 5.0 | 36        |
| 66 | Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy?. Current Topics in Medicinal Chemistry, 2016, 16, 3033-3047.                                                      | 1.0 | 54        |
| 67 | Anti-Oxidants in Parkinson's Disease Therapy: A Critical Point of View. Current Neuropharmacology, 2016, 14, 260-271.                                                                              | 1.4 | 82        |
| 68 | Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in<br>mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.                         | 2.1 | 57        |
| 69 | Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling<br>in cultured microglia cells. Journal of Neuroinflammation, 2015, 12, 230.                 | 3.1 | 99        |
| 70 | Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron<br>Radiation Circular Dichroism. Biomolecules, 2015, 5, 724-734.                                  | 1.8 | 26        |
| 71 | Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell<br>Lines upon Differentiation. PLoS ONE, 2015, 10, e0136769.                                         | 1.1 | 55        |
| 72 | Differences in the Binding of Copper(I) to α- and β-Synuclein. Inorganic Chemistry, 2015, 54, 265-272.                                                                                             | 1.9 | 32        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | NADH fluorescence lifetime is an endogenous reporter of αâ€synuclein aggregation in live cells. FASEB<br>Journal, 2015, 29, 2484-2494.                                                                                             | 0.2 | 24        |
| 74 | Binding interactions of agents that alter $\hat{I}\pm$ -synuclein aggregation. RSC Advances, 2015, 5, 11577-11590.                                                                                                                 | 1.7 | 22        |
| 75 | The functional dissection of the plasma corona of SiO <sub>2</sub> -NPs spots histidine rich<br>glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale, 2015, 7,<br>17710-17728.             | 2.8 | 49        |
| 76 | Human Tyrosinase Produced in Insect Cells: A Landmark for the Screening of New Drugs Addressing its<br>Activity. Molecular Biotechnology, 2015, 57, 45-57.                                                                         | 1.3 | 34        |
| 77 | Peptides as Modulators of α-Synuclein Aggregation. Protein and Peptide Letters, 2015, 22, 354-361.                                                                                                                                 | 0.4 | 7         |
| 78 | LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Frontiers in Molecular Neuroscience, 2014, 7, 49.                                   | 1.4 | 82        |
| 79 | Interactions of metal ions with $\hat{I}\pm$ synuclein and amyloid $\hat{I}^2$ peptides. , 2014, , .                                                                                                                               |     | Ο         |
| 80 | LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?. Journal of Neuroinflammation, 2014, 11, 52.                                                                                                                | 3.1 | 148       |
| 81 | Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2014-2024.                  | 1.1 | 72        |
| 82 | DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. Journal of Biological Chemistry, 2014, 289, 10887-10899.                                                                                                                     | 1.6 | 76        |
| 83 | Investigation of Bindingâ€Site Homology between Mushroom and Bacterial Tyrosinases by Using<br>Aurones as Effectors. ChemBioChem, 2014, 15, 1325-1333.                                                                             | 1.3 | 26        |
| 84 | Ceftriaxone Blocks the Polymerization of α-Synuclein and Exerts Neuroprotective Effects in Vitro. ACS<br>Chemical Neuroscience, 2014, 5, 30-38.                                                                                    | 1.7 | 60        |
| 85 | Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?. Ageing Research Reviews, 2014, 13, 107-114.                                                                                                       | 5.0 | 66        |
| 86 | Probing kojic acid binding to tyrosinase enzyme: insights from a model complex and QM/MM calculations. Chemical Communications, 2014, 50, 308-310.                                                                                 | 2.2 | 25        |
| 87 | Biophysical groundwork as a hinge to unravel the biology of <i>α</i> -synuclein aggregation and toxicity. Quarterly Reviews of Biophysics, 2014, 47, 1-48.                                                                         | 2.4 | 32        |
| 88 | NADH is an Endogenous Reporter for Alpha-Synuclein Aggregation in Live Cells. Biophysical Journal,<br>2014, 106, 56a.                                                                                                              | 0.2 | 0         |
| 89 | The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting<br>the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Human Molecular Genetics,<br>2014, 23, 5615-5629. | 1.4 | 56        |
| 90 | A Novel Prion Protein-Tyrosine Hydroxylase Interaction. CNS and Neurological Disorders - Drug Targets, 2014, 13, 896-908.                                                                                                          | 0.8 | 3         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2013, 22, 1140-1156.                                                               | 1.4 | 124       |
| 92  | Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal<br>Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.                                                            | 1.9 | 58        |
| 93  | Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. Journal of Biological Inorganic Chemistry, 2013, 18, 81-93.                                     | 1.1 | 27        |
| 94  | Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies.<br>FASEB Journal, 2013, 27, 2101-2110.                                                                                  | 0.2 | 42        |
| 95  | Small molecules interacting with α-synuclein: antiaggregating and cytoprotective properties. Amino Acids, 2013, 45, 327-338.                                                                                            | 1.2 | 52        |
| 96  | Unsymmetrical Binding Modes of the HOPNO Inhibitor of Tyrosinase: From Model Complexes to the<br>Enzyme. Chemistry - A European Journal, 2013, 19, 3655-3664.                                                           | 1.7 | 16        |
| 97  | α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity. PLoS ONE, 2013, 8, e82732.                                                                                                             | 1.1 | 47        |
| 98  | Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in<br>Synucleinopathies. PLoS ONE, 2013, 8, e55375.                                                                                      | 1.1 | 465       |
| 99  | Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?. Biochemical Society Transactions, 2012, 40, 1095-1101.                                                                                  | 1.6 | 20        |
| 100 | Dopamine-derived Quinones Affect the Structure of the Redox Sensor DJ-1 through Modifications at Cys-106 and Cys-53. Journal of Biological Chemistry, 2012, 287, 18738-18749.                                           | 1.6 | 61        |
| 101 | Parkinson's disease and immune system: is the culprit LRRKing in the periphery?. Journal of<br>Neuroinflammation, 2012, 9, 94.                                                                                          | 3.1 | 34        |
| 102 | Alpha-synuclein pore forming activity upon membrane association. Biochimica Et Biophysica Acta -<br>Biomembranes, 2012, 1818, 2876-2883.                                                                                | 1.4 | 86        |
| 103 | Worm-Like Ising Model for Protein Mechanical Unfolding under the Effect of Osmolytes. Biophysical<br>Journal, 2012, 102, 342-350.                                                                                       | 0.2 | 13        |
| 104 | Single-Molecule Force Spectroscopy of Chimeric Polyprotein Constructs Containing Intrinsically Disordered Domains. , 2012, 896, 47-56.                                                                                  |     | 5         |
| 105 | Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish:<br>insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biology, 2012, 35,<br>1587-1600. | 0.5 | 23        |
| 106 | Human SOD2 Modification by Dopamine Quinones Affects Enzymatic Activity by Promoting Its<br>Aggregation: Possible Implications for Parkinson's Disease. PLoS ONE, 2012, 7, e38026.                                      | 1.1 | 59        |
| 107 | Covalent α-Synuclein Dimers: Chemico-Physical and Aggregation Properties. PLoS ONE, 2012, 7, e50027.                                                                                                                    | 1.1 | 35        |
| 108 | Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates<br>Formation of Homodimers. PLoS ONE, 2012, 7, e43472.                                                                 | 1.1 | 92        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Exosomes-associated neurodegeneration and progression of Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 217-25.                                                                                                           | 0.1 | 55        |
| 110 | Designed Hairpin Peptides Interfere with Amyloidogenesis Pathways: Fibril Formation and Cytotoxicity Inhibition, Interception of the Preamyloid State. Biochemistry, 2011, 50, 8202-8212.                                                               | 1.2 | 50        |
| 111 | Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Archives of Biochemistry and Biophysics, 2011, 505, 67-74.                                                                                                       | 1.4 | 37        |
| 112 | Insights into the oligomerization process of the C-terminal domain of human plasma membrane<br>Ca2+-ATPase. Archives of Biochemistry and Biophysics, 2011, 506, 194-200.                                                                                | 1.4 | 2         |
| 113 | Raman, UV–vis, and CD Spectroscopic Studies of Dodecameric Oxyhemocyanin from <i>Carcinus<br/>aestuarii</i> . Chemistry Letters, 2011, 40, 1360-1362.                                                                                                   | 0.7 | 1         |
| 114 | Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of<br>Parkinson's disease?. Molecular Neurodegeneration, 2011, 6, 6.                                                                                        | 4.4 | 36        |
| 115 | Observing the osmophobic effect in action at the single molecule level. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2214-2223.                                                                                                          | 1.5 | 15        |
| 116 | Singleâ€Moleculeâ€Level Evidence for the Osmophobic Effect. Angewandte Chemie - International Edition,<br>2011, 50, 4394-4397.                                                                                                                          | 7.2 | 25        |
| 117 | Structural and Morphological Characterization of Aggregated Species of α-Synuclein Induced by Docosahexaenoic Acid. Journal of Biological Chemistry, 2011, 286, 22262-22274.                                                                            | 1.6 | 101       |
| 118 | α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11,<br>41.                                                                                                                                           | 0.8 | 44        |
| 119 | Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod<br>Hemocyanin. Journal of Biological Chemistry, 2010, 285, 19338-19345.                                                                                  | 1.6 | 8         |
| 120 | Structural Characterization of a High Affinity Mononuclear Site in the Copper(II)-α-Synuclein Complex.<br>Journal of the American Chemical Society, 2010, 132, 18057-18066.                                                                             | 6.6 | 36        |
| 121 | Insights on Channel-Like Activity of Membrane Bound Alpha-Synuclein. Biophysical Journal, 2010, 98,<br>109a.                                                                                                                                            | 0.2 | 0         |
| 122 | Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione:<br>Implications for mitochondrial dysfunction in Parkinson disease. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2010, 1802, 699-706. | 1.8 | 67        |
| 123 | Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochemical and<br>Biophysical Research Communications, 2010, 394, 424-428.                                                                                                   | 1.0 | 83        |
| 124 | Pathogenic Mutations Shift the Equilibria of αâ€ <del>S</del> ynuclein Single Molecules towards Structured<br>Conformers. ChemBioChem, 2009, 10, 176-183.                                                                                               | 1.3 | 71        |
| 125 | Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of<br>Parkinson's Disease. NeuroMolecular Medicine, 2009, 11, 239-251.                                                                                     | 1.8 | 64        |
| 126 | A protein-based oxygen biosensor for high-throughput monitoring of cell growth and cell viability.<br>Analytical Biochemistry, 2009, 385, 242-248.                                                                                                      | 1.1 | 23        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Structural insights on physiological functions and pathological effects of ±â€synuclein. FASEB<br>Journal, 2009, 23, 329-340.                                                                           | 0.2 | 129       |
| 128 | Molecular Insights into the Interaction between α-Synuclein and Docosahexaenoic Acid. Journal of<br>Molecular Biology, 2009, 394, 94-107.                                                               | 2.0 | 59        |
| 129 | Trapping tyrosinase key active intermediate under turnover. Dalton Transactions, 2009, , 6468.                                                                                                          | 1.6 | 24        |
| 130 | Type-3 copper proteins as biocompatible and reusable oxygen sensors. Inorganica Chimica Acta, 2008, 361, 1116-1121.                                                                                     | 1.2 | 15        |
| 131 | Conformational Equilibria in Monomeric α-Synuclein at the Single-Molecule Level. PLoS Biology, 2008,<br>6, e6.                                                                                          | 2.6 | 181       |
| 132 | Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.<br>Archives of Biochemistry and Biophysics, 2008, 471, 159-167.                                         | 1.4 | 15        |
| 133 | Broken Helix in Vesicle and Micelle-Bound α-Synuclein: Insights from Site-Directed Spin Labeling-EPR<br>Experiments and MD Simulations. Journal of the American Chemical Society, 2008, 130, 6690-6691. | 6.6 | 69        |
| 134 | The Reaction of $\hat{I}_{\pm}$ -Synuclein with Tyrosinase. Journal of Biological Chemistry, 2008, 283, 16808-16817.                                                                                    | 1.6 | 116       |
| 135 | Molecular Basis of the Bohr Effect in Arthropod Hemocyanin. Journal of Biological Chemistry, 2008, 283, 31941-31948.                                                                                    | 1.6 | 13        |
| 136 | Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine. Journal of Biological<br>Chemistry, 2007, 282, 15597-15605.                                                                | 1.6 | 254       |
| 137 | X-ray absorption analysis of the active site of Streptomyces antibioticus Tyrosinase upon binding of transition state analogue inhibitors. Archives of Biochemistry and Biophysics, 2007, 465, 320-327. | 1.4 | 18        |
| 138 | Structural Features that Govern Enzymatic Activity in Carbonic Anhydrase from a Low-Temperature<br>Adapted Fish, Chionodraco hamatus. Biophysical Journal, 2007, 93, 2781-2790.                         | 0.2 | 15        |
| 139 | Tryptophan-to-Dye Fluorescence Energy Transfer Applied to Oxygen Sensing by Using Type-3 Copper<br>Proteins. Chemistry - A European Journal, 2007, 13, 7085-7090.                                       | 1.7 | 25        |
| 140 | Structure and topology of the non-amyloid-β component fragment of human α-synuclein bound to micelles: Implications for the aggregation process. Protein Science, 2006, 15, 1408-1416.                  | 3.1 | 48        |
| 141 | Molecular Evolution and Phylogeny of Sipunculan Hemerythrins. Journal of Molecular Evolution, 2006, 62, 32-41.                                                                                          | 0.8 | 14        |
| 142 | Mechanistic Insight into the Activity of Tyrosinase from Variable-Temperature Studies in an<br>Aqueous/Organic Solvent. Chemistry - A European Journal, 2006, 12, 2504-2514.                            | 1.7 | 31        |
| 143 | Paramagnetic Properties of the Halide-Bound Derivatives of Oxidised Tyrosinase Investigated by1H NMR<br>Spectroscopy. Chemistry - A European Journal, 2006, 12, 7668-7675.                              | 1.7 | 12        |
| 144 | Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease.<br>Journal of Neurochemistry, 2005, 93, 246-256.                                                   | 2.1 | 103       |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Quaternary structure and functional properties of Penaeus monodon hemocyanin. FEBS Journal, 2005, 272, 2060-2075.                                                                                                                | 2.2 | 27        |
| 146 | MXAN Analysis of the XANES Energy Region of a Mononuclear Copper Complex:Â Applications to<br>Bioinorganic Systems. Inorganic Chemistry, 2005, 44, 9652-9659.                                                                    | 1.9 | 16        |
| 147 | A Topological Model of the Interaction between α-Synuclein and Sodium Dodecyl Sulfate Micellesâ€.<br>Biochemistry, 2005, 44, 329-339.                                                                                            | 1.2 | 112       |
| 148 | Cloning, expression, purification, and spectroscopic analysis of the fragment 57–102 of human<br>α-synuclein. Protein Expression and Purification, 2005, 39, 90-96.                                                              | 0.6 | 8         |
| 149 | Interaction between the Type-3 Copper Protein Tyrosinase and the Substrate Analoguep-Nitrophenol Studied by NMR. Journal of the American Chemical Society, 2005, 127, 567-575.                                                   | 6.6 | 39        |
| 150 | Stopped-flow Fluorescence Studies of Inhibitor Binding to Tyrosinase from Streptomyces antibioticus. Journal of Biological Chemistry, 2004, 279, 13425-13434.                                                                    | 1.6 | 26        |
| 151 | New aspects of the reactivity of tyrosinase. Micron, 2004, 35, 141-142.                                                                                                                                                          | 1.1 | 11        |
| 152 | Structural role of the copper ions in the dinuclear active site of Carcinus aestuarii hemocyanin.<br>Micron, 2004, 35, 43-44.                                                                                                    | 1.1 | 1         |
| 153 | What are the structural features of the active site that define binuclear copper proteins function?.<br>Micron, 2004, 35, 143-145.                                                                                               | 1.1 | 4         |
| 154 | Structural properties, conformational stability and oxygen binding properties of Penaeus monodon hemocyanin. Micron, 2004, 35, 53-54.                                                                                            | 1.1 | 0         |
| 155 | Spectroscopic Characterization of the Electronic Changes in the Active Site of Streptomyces antibioticus Tyrosinase upon Binding of Transition State Analogue Inhibitors. Journal of Biological Chemistry, 2003, 278, 7381-7389. | 1.6 | 34        |
| 156 | Structural Basis and Mechanism of the Inhibition of the Type-3 Copper Protein Tyrosinase from Streptomyces antibioticusby Halide Ions. Journal of Biological Chemistry, 2002, 277, 30436-30444.                                  | 1.6 | 43        |
| 157 | Tyrosinase-catalyzed Oxidation of Fluorophenols. Journal of Biological Chemistry, 2002, 277, 44606-44612.                                                                                                                        | 1.6 | 71        |
| 158 | Oxidized Derivatives of Octopus vulgaris and Carcinus aestuarii Hemocyanins at pH 7.5 and Related<br>Models by X-ray Absorption Spectroscopy. Biophysical Journal, 2002, 82, 3254-3268.                                          | 0.2 | 16        |
| 159 | Comparison of the X-ray absorption properties of the binuclear active site of molluscan and arthropodan hemocyanins. Journal of Biological Inorganic Chemistry, 2002, 7, 120-128.                                                | 1.1 | 12        |
| 160 | Interaction and coordination geometries for Ag(I) in the two metal sites of hemocyanin. FEBS Journal, 2000, 267, 1754-1760.                                                                                                      | 0.2 | 4         |
| 161 | Molecular heterogeneity of the hemocyanin isolated from the king crabParalithodes camtschaticae.<br>FEBS Journal, 2000, 267, 7046-7057.                                                                                          | 0.2 | 16        |
| 162 | Kinetic and paramagnetic NMR investigations of the inhibition of Streptomyces antibioticus tyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 27-35.                                                              | 1.8 | 46        |

| #   | Article                                                                                                                                                                                                                  | IF               | CITATIONS           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 163 | EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. FEBS<br>Letters, 2000, 474, 228-232.                                                                                         | 1.3              | 40                  |
| 164 | 1 H NMR spectroscopy of the binuclear Cu(II) active site of Streptomyces antibioticus tyrosinase. FEBS Letters, 1999, 442, 215-220.                                                                                      | 1.3              | 64                  |
| 165 | Isolation of the met-derivative intermediate in the catalase-like activity of deoxygenated Octopus vulgaris hemocyanin. Journal of Inorganic Biochemistry, 1998, 72, 211-215.                                            | 1.5              | 9                   |
| 166 | Understanding the Electronic Properties of the CuASite from the Soluble Domain of<br>CytochromecOxidase through Paramagnetic1H NMRâ€. Biochemistry, 1998, 37, 7378-7389.                                                 | 1.2              | 63                  |
| 167 | The Binding of Azide to Copper-Containing and Cobalt-Containing Forms of Hemocyanin from the<br>Mediterranean Crab Carcinus Aestuarii. FEBS Journal, 1997, 247, 688-694.                                                 | 0.2              | 5                   |
| 168 | Nitrite Reductase Activity of DeoxyCarcinus maenasHemocyanin:Â Formation of the Half-Met Derivative.<br>Inorganic Chemistry, 1996, 35, 1393-1394.                                                                        | 1.9              | 4                   |
| 169 | Cobalt(II) Substituted Derivatives ofCarcinus maenasHemocyanin:Â Magnetic Characterization,<br>Magnetooptic, and Kinetic Studies Regarding the Geometry of the Active Site. Inorganic Chemistry,<br>1996, 35, 7482-7492. | 1.9              | 11                  |
| 170 | The Oxidation of Hemocyanin. Kinetics, Reaction Mechanism and Characterization of Met-Hemocyanin<br>Product. FEBS Journal, 1995, 232, 98-105.                                                                            | 0.2              | 9                   |
| 171 | Structural characterization of mononuclear Cu(II) and its nitrite complex in the active site of Carcinus maenas hemocyanin. Biochemistry, 1995, 34, 1524-1533.                                                           | 1.2              | 17                  |
| 172 | Investigation of Solid and Solution Structures of N-Substituted Cu(II) Salicyldimines by X-Ray Absorption Spectroscopy. Inorganic Chemistry, 1995, 34, 2377-2381.                                                        | 1.9              | 6                   |
| 173 | Cu(II) coordination in arthropod and mollusk green half-methemocyanins analyzed by electron spin-echo envelope modulation spectroscopy. Biochemistry, 1995, 34, 1513-1523.                                               | 1.2              | 18                  |
| 174 | Low temperature optical spectroscopy of cobalt-substituted hemocyanin from Carcinus maenas.<br>European Biophysics Journal, 1993, 22, 157.                                                                               | 1.2              | 4                   |
| 175 | The Binding of Cd(II) to the Hemocyanin of the Mediterranean Crab Carcinus maenas. Archives of Biochemistry and Biophysics, 1993, 302, 78-84.                                                                            | 1.4              | 6                   |
| 176 | Crystal structure and electron spin echo envelope modulation study of [Cu(II)(TEPA)(NO2)]PF6 (TEPA =) Tj ETQq<br>hemocyanin. Journal of the American Chemical Society, 1993, 115, 2093-2102.                             | 0 0 0 rgB<br>6.6 | T /Overlock 1<br>55 |
| 177 | Preparation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin. Biochemistry, 1992, 31, 9294-9303.                                                                    | 1.2              | 49                  |
| 178 | Circular dichroism and fluorescence studies to probe the conformational properties of Rhus vernicifera laccase. Inorganica Chimica Acta, 1992, 193, 237-243.                                                             | 1.2              | 3                   |
| 179 | The aromatic circular dichroism spectrum as a probe for conformational changes in the active site environment of hemocyanins. BBA - Proteins and Proteomics, 1992, 1120, 24-32.                                          | 2.1              | 17                  |
| 180 | Cobalt-substituted derivatives of Carcinus hemocyanin. Biology of Metals, 1990, 3, 90-92.                                                                                                                                | 1.1              | 0                   |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Waterâ€Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for<br>Neuromelanin of Human Brain <i>Locus Coeruleus</i> . Angewandte Chemie, 0, , . | 1.6 | 1         |