Luigi Bubacco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1402576/publications.pdf

Version: 2024-02-01

	41258	74018
7,515	49	75
citations	h-index	g-index
19∩	190	9919
190	190	9919
docs citations	times ranked	citing authors
	citations 190	7,515 49 citations h-index 190 190

#	Article	IF	CITATIONS
1	Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE, 2013, 8, e55375.	1.1	465
2	Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine. Journal of Biological Chemistry, 2007, 282, 15597-15605.	1.6	254
3	Impaired dopamine metabolism in Parkinson's disease pathogenesis. Molecular Neurodegeneration, 2019, 14, 35.	4.4	187
4	Conformational Equilibria in Monomeric α-Synuclein at the Single-Molecule Level. PLoS Biology, 2008, 6, e6.	2.6	181
5	LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?. Journal of Neuroinflammation, 2014, 11, 52.	3.1	148
6	Structural insights on physiological functions and pathological effects of ±â€synuclein. FASEB Journal, 2009, 23, 329-340.	0.2	129
7	LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Molecular Neurodegeneration, 2016, 11, 1.	4.4	128
8	GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2013, 22, 1140-1156.	1.4	124
9	COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. Npj Parkinson's Disease, 2020, 6, 18.	2.5	120
10	The Reaction of α-Synuclein with Tyrosinase. Journal of Biological Chemistry, 2008, 283, 16808-16817.	1.6	116
11	A Topological Model of the Interaction between α-Synuclein and Sodium Dodecyl Sulfate Micellesâ€. Biochemistry, 2005, 44, 329-339.	1.2	112
12	DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Scientific Reports, 2017, 7, 40699.	1.6	107
13	Copper Ions and Parkinson's Disease: Why Is Homeostasis So Relevant?. Biomolecules, 2020, 10, 195.	1.8	107
14	Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease. Journal of Neurochemistry, 2005, 93, 246-256.	2.1	103
15	Structural and Morphological Characterization of Aggregated Species of α-Synuclein Induced by Docosahexaenoic Acid. Journal of Biological Chemistry, 2011, 286, 22262-22274.	1.6	101
16	Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. Journal of Neuroinflammation, 2015, 12, 230.	3.1	99
17	Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers. PLoS ONE, 2012, 7, e43472.	1.1	92
18	Alpha-synuclein pore forming activity upon membrane association. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2876-2883.	1.4	86

#	Article	IF	Citations
19	Dopamine quinones interact with $\hat{l}\pm$ -synuclein to form unstructured adducts. Biochemical and Biophysical Research Communications, 2010, 394, 424-428.	1.0	83
20	LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Frontiers in Molecular Neuroscience, 2014, 7, 49.	1.4	82
21	Anti-Oxidants in Parkinson's Disease Therapy: A Critical Point of View. Current Neuropharmacology, 2016, 14, 260-271.	1.4	82
22	α-Synuclein is a Novel Microtubule Dynamase. Scientific Reports, 2016, 6, 33289.	1.6	79
23	DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. Journal of Biological Chemistry, 2014, 289, 10887-10899.	1.6	76
24	Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiology of Disease, 2017, 108, 65-72.	2.1	74
25	Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathologica Communications, 2017, 5, 22.	2.4	73
26	Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2014-2024.	1.1	72
27	Tyrosinase-catalyzed Oxidation of Fluorophenols. Journal of Biological Chemistry, 2002, 277, 44606-44612.	1.6	71
28	Pathogenic Mutations Shift the Equilibria of αâ€Synuclein Single Molecules towards Structured Conformers. ChemBioChem, 2009, 10, 176-183.	1.3	71
29	Broken Helix in Vesicle and Micelle-Bound α-Synuclein: Insights from Site-Directed Spin Labeling-EPR Experiments and MD Simulations. Journal of the American Chemical Society, 2008, 130, 6690-6691.	6.6	69
30	<scp>USP</scp> 14 inhibition corrects an <i>inÂvivo</i> model of impaired mitophagy. EMBO Molecular Medicine, 2018, 10, .	3.3	69
31	Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: Implications for mitochondrial dysfunction in Parkinson disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 699-706.	1.8	67
32	GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2017, 26, 2747-2767.	1.4	67
33	Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?. Ageing Research Reviews, 2014, 13, 107-114.	5.0	66
34	1 H NMR spectroscopy of the binuclear Cu(II) active site of Streptomyces antibioticus tyrosinase. FEBS Letters, 1999, 442, 215-220.	1.3	64
35	Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson's Disease. NeuroMolecular Medicine, 2009, 11, 239-251.	1.8	64
36	Understanding the Electronic Properties of the CuASite from the Soluble Domain of CytochromecOxidase through Paramagnetic1H NMRâ€. Biochemistry, 1998, 37, 7378-7389.	1.2	63

#	Article	IF	CITATIONS
37	Dopamine-derived Quinones Affect the Structure of the Redox Sensor DJ-1 through Modifications at Cys-106 and Cys-53. Journal of Biological Chemistry, 2012, 287, 18738-18749.	1.6	61
38	Ceftriaxone Blocks the Polymerization of \hat{l}_{\pm} -Synuclein and Exerts Neuroprotective Effects in Vitro. ACS Chemical Neuroscience, 2014, 5, 30-38.	1.7	60
39	Molecular Insights into the Interaction between α-Synuclein and Docosahexaenoic Acid. Journal of Molecular Biology, 2009, 394, 94-107.	2.0	59
40	Human SOD2 Modification by Dopamine Quinones Affects Enzymatic Activity by Promoting Its Aggregation: Possible Implications for Parkinson's Disease. PLoS ONE, 2012, 7, e38026.	1.1	59
41	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	1.9	58
42	<scp>αâ€Synuclein</scp> evokes <scp>NLRP3</scp> inflammasomeâ€mediated <scp>IL</scp> â€1β secretion fr primary human microglia. Glia, 2021, 69, 1413-1428.	om 2.5	58
43	Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.	2.1	57
44	The chaperone-like protein 14-3-3 \hat{l} - interacts with human \hat{l} ±-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing \hat{l} ±-synuclein cellular toxicity. Human Molecular Genetics, 2014, 23, 5615-5629.	1.4	56
45	Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity. Journal of Biological Chemistry, 2016, 291, 9257-9267.	1.6	56
46	Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 68.	1.7	56
47	Crystal structure and electron spin echo envelope modulation study of [Cu(II)(TEPA)(NO2)]PF6 (TEPA =) Tj ETQq1 hemocyanin. Journal of the American Chemical Society, 1993, 115, 2093-2102.	1 0.7843 6.6	_
48	Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation. PLoS ONE, 2015, 10, e0136769.	1.1	55
49	Exosomes-associated neurodegeneration and progression of Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 217-25.	0.1	55
50	Parkinson's Disease–Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Molecular Neurobiology, 2021, 58, 3119-3140.	1.9	54
51	Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy?. Current Topics in Medicinal Chemistry, 2016, 16, 3033-3047.	1.0	54
52	Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Molecular Neurobiology, 2018, 55, 8754-8763.	1.9	53
53	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	3.9	53
54	Transcriptome analysis of LRRK2 knock-out microglia cells reveals alterations of inflammatory- and oxidative stress-related pathways upon treatment with \hat{l}_{\pm} -synuclein fibrils. Neurobiology of Disease, 2019, 129, 67-78.	2.1	53

#	Article	IF	CITATIONS
55	Small molecules interacting with \hat{l}_{\pm} -synuclein: antiaggregating and cytoprotective properties. Amino Acids, 2013, 45, 327-338.	1.2	52
56	Designed Hairpin Peptides Interfere with Amyloidogenesis Pathways: Fibril Formation and Cytotoxicity Inhibition, Interception of the Preamyloid State. Biochemistry, 2011, 50, 8202-8212.	1.2	50
57	LRRK2 deficiency impacts ceramide metabolism in brain. Biochemical and Biophysical Research Communications, 2016, 478, 1141-1146.	1.0	50
58	Preparation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin. Biochemistry, 1992, 31, 9294-9303.	1.2	49
59	The functional dissection of the plasma corona of SiO ₂ -NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages. Nanoscale, 2015, 7, 17710-17728.	2.8	49
60	Structure and topology of the non-amyloid- \hat{l}^2 component fragment of human \hat{l}_\pm -synuclein bound to micelles: Implications for the aggregation process. Protein Science, 2006, 15, 1408-1416.	3.1	48
61	α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity. PLoS ONE, 2013, 8, e82732.	1.1	47
62	Kinetic and paramagnetic NMR investigations of the inhibition of Streptomyces antibioticus tyrosinase. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 27-35.	1.8	46
63	PAK6 Phosphorylates $14\text{-}3\text{-}3\hat{1}^3$ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	1.4	46
64	\hat{l}_{\pm} -Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11, 41.	0.8	44
65	Structural Basis and Mechanism of the Inhibition of the Type-3 Copper Protein Tyrosinase from Streptomyces antibioticusby Halide Ions. Journal of Biological Chemistry, 2002, 277, 30436-30444.	1.6	43
66	Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB Journal, 2013, 27, 2101-2110.	0.2	42
67	Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson's Disease. , 2018, 9, 716.		42
68	Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2018, 9, 2849-2858.	1.7	42
69	Ceramides in Parkinson's Disease: From Recent Evidence to New Hypotheses. Frontiers in Neuroscience, 2019, 13, 330.	1.4	41
70	EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. FEBS Letters, 2000, 474, 228-232.	1.3	40
71	Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. ACS Chemical Neuroscience, 2017, 8, 501-512.	1.7	40
72	Interaction between the Type-3 Copper Protein Tyrosinase and the Substrate Analoguep-Nitrophenol Studied by NMR. Journal of the American Chemical Society, 2005, 127, 567-575.	6.6	39

#	Article	IF	CITATIONS
73	2-Hydroxypyridine- <i>N</i> -oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 55-60.	1.3	38
74	Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Archives of Biochemistry and Biophysics, 2011, 505, 67-74.	1.4	37
75	Synapsin III is a key component of αâ€synuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018, 28, 875-888.	2.1	37
76	Structural Characterization of a High Affinity Mononuclear Site in the Copper(II)-α-Synuclein Complex. Journal of the American Chemical Society, 2010, 132, 18057-18066.	6.6	36
77	Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson's disease?. Molecular Neurodegeneration, 2011, 6, 6.	4.4	36
78	Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Research Reviews, 2016, 26, 62-71.	5.0	36
79	Covalent α-Synuclein Dimers: Chemico-Physical and Aggregation Properties. PLoS ONE, 2012, 7, e50027.	1.1	35
80	Spectroscopic Characterization of the Electronic Changes in the Active Site of Streptomyces antibioticus Tyrosinase upon Binding of Transition State Analogue Inhibitors. Journal of Biological Chemistry, 2003, 278, 7381-7389.	1.6	34
81	Parkinson's disease and immune system: is the culprit LRRKing in the periphery?. Journal of Neuroinflammation, 2012, 9, 94.	3.1	34
82	Human Tyrosinase Produced in Insect Cells: A Landmark for the Screening of New Drugs Addressing its Activity. Molecular Biotechnology, 2015, 57, 45-57.	1.3	34
83	\hat{l} ±-Synuclein Dimers Impair Vesicle Fission during Clathrin-Mediated Synaptic Vesicle Recycling. Frontiers in Cellular Neuroscience, 2017, 11 , 388 .	1.8	34
84	Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. Journal of Neuroinflammation, 2018, 15, 297.	3.1	33
85	Biophysical groundwork as a hinge to unravel the biology of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -synuclein aggregation and toxicity. Quarterly Reviews of Biophysics, 2014, 47, 1-48.	2.4	32
86	Differences in the Binding of Copper(I) to \hat{l}_{\pm} - and \hat{l}^2 -Synuclein. Inorganic Chemistry, 2015, 54, 265-272.	1.9	32
87	Extracellular clusterin limits the uptake of αâ€synuclein fibrils by murine and human astrocytes. Glia, 2021, 69, 681-696.	2.5	32
88	Mechanistic Insight into the Activity of Tyrosinase from Variable-Temperature Studies in an Aqueous/Organic Solvent. Chemistry - A European Journal, 2006, 12, 2504-2514.	1.7	31
89	Cross-talk between LRRK2 and PKA: implication for Parkinson's disease?. Biochemical Society Transactions, 2017, 45, 261-267.	1.6	31
90	Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. International Journal of Molecular Sciences, 2022, 23, 398.	1.8	30

#	Article	IF	CITATIONS
91	Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Human Molecular Genetics, 2018, 27, 1618-1629.	1.4	28
92	Quaternary structure and functional properties of Penaeus monodon hemocyanin. FEBS Journal, 2005, 272, 2060-2075.	2.2	27
93	Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. Journal of Biological Inorganic Chemistry, 2013, 18, 81-93.	1.1	27
94	Stopped-flow Fluorescence Studies of Inhibitor Binding to Tyrosinase from Streptomyces antibioticus. Journal of Biological Chemistry, 2004, 279, 13425-13434.	1.6	26
95	Investigation of Bindingâ€Site Homology between Mushroom and Bacterial Tyrosinases by Using Aurones as Effectors. ChemBioChem, 2014, 15, 1325-1333.	1.3	26
96	Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism. Biomolecules, 2015, 5, 724-734.	1.8	26
97	Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson's disease. Journal of Neuroinflammation, 2022, 19, 50.	3.1	26
98	Tryptophan-to-Dye Fluorescence Energy Transfer Applied to Oxygen Sensing by Using Type-3 Copper Proteins. Chemistry - A European Journal, 2007, 13, 7085-7090.	1.7	25
99	Singleâ€Moleculeâ€Level Evidence for the Osmophobic Effect. Angewandte Chemie - International Edition, 2011, 50, 4394-4397.	7.2	25
100	Probing kojic acid binding to tyrosinase enzyme: insights from a model complex and QM/MM calculations. Chemical Communications, 2014, 50, 308-310.	2,2	25
101	Trapping tyrosinase key active intermediate under turnover. Dalton Transactions, 2009, , 6468.	1.6	24
102	NADH fluorescence lifetime is an endogenous reporter of αâ€synuclein aggregation in live cells. FASEB Journal, 2015, 29, 2484-2494.	0.2	24
103	Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent Aggregation of Tau Protein. Angewandte Chemie - International Edition, 2020, 59, 6607-6611.	7.2	24
104	A protein-based oxygen biosensor for high-throughput monitoring of cell growth and cell viability. Analytical Biochemistry, 2009, 385, 242-248.	1.1	23
105	Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biology, 2012, 35, 1587-1600.	0.5	23
106	Binding interactions of agents that alter α-synuclein aggregation. RSC Advances, 2015, 5, 11577-11590.	1.7	22
107	Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Science Alliance, 2019, 2, e201900392.	1.3	22
108	Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathologica, 2022, 144, 81-106.	3.9	22

#	Article	IF	CITATIONS
109	Immunization therapies for Parkinson's disease: state of the art and considerations for future clinical trials. Expert Opinion on Investigational Drugs, 2020, 29, 685-695.	1.9	21
110	Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?. Biochemical Society Transactions, 2012, 40, 1095-1101.	1.6	20
111	Determination of ATP, ADP, and AMP Levels by Reversed-Phase High-Performance Liquid Chromatography in Cultured Cells. Methods in Molecular Biology, 2019, 1925, 223-232.	0.4	20
112	Semisynthetic Modification of Tau Protein with Di-Ubiquitin Chains for Aggregation Studies. International Journal of Molecular Sciences, 2020, 21, 4400.	1.8	20
113	The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.	2.5	19
114	Cu(II) coordination in arthropod and mollusk green half-methemocyanins analyzed by electron spin-echo envelope modulation spectroscopy. Biochemistry, 1995, 34, 1513-1523.	1.2	18
115	X-ray absorption analysis of the active site of Streptomyces antibioticus Tyrosinase upon binding of transition state analogue inhibitors. Archives of Biochemistry and Biophysics, 2007, 465, 320-327.	1.4	18
116	The aromatic circular dichroism spectrum as a probe for conformational changes in the active site environment of hemocyanins. BBA - Proteins and Proteomics, 1992, 1120, 24-32.	2.1	17
117	Structural characterization of mononuclear Cu(II) and its nitrite complex in the active site of Carcinus maenas hemocyanin. Biochemistry, 1995, 34, 1524-1533.	1.2	17
118	Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6469.	1.8	17
119	Molecular heterogeneity of the hemocyanin isolated from the king crabParalithodes camtschaticae. FEBS Journal, 2000, 267, 7046-7057.	0.2	16
120	Oxidized Derivatives of Octopus vulgaris and Carcinus aestuarii Hemocyanins at pH 7.5 and Related Models by X-ray Absorption Spectroscopy. Biophysical Journal, 2002, 82, 3254-3268.	0.2	16
121	MXAN Analysis of the XANES Energy Region of a Mononuclear Copper Complex:Â Applications to Bioinorganic Systems. Inorganic Chemistry, 2005, 44, 9652-9659.	1.9	16
122	Unsymmetrical Binding Modes of the HOPNO Inhibitor of Tyrosinase: From Model Complexes to the Enzyme. Chemistry - A European Journal, 2013, 19, 3655-3664.	1.7	16
123	High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy. Biophysical Journal, 2017, 113, 1685-1696.	0.2	16
124	Impacts of increased \hat{i} ±-synuclein on clathrin-mediated endocytosis at synapses: implications for neurodegenerative diseases. Neural Regeneration Research, 2018, 13, 647.	1.6	16
125	Structural Features that Govern Enzymatic Activity in Carbonic Anhydrase from a Low-Temperature Adapted Fish, Chionodraco hamatus. Biophysical Journal, 2007, 93, 2781-2790.	0.2	15
126	Type-3 copper proteins as biocompatible and reusable oxygen sensors. Inorganica Chimica Acta, 2008, 361, 1116-1121.	1.2	15

#	Article	IF	Citations
127	Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin. Archives of Biochemistry and Biophysics, 2008, 471, 159-167.	1.4	15
128	Observing the osmophobic effect in action at the single molecule level. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2214-2223.	1.5	15
129	Unsaturated Fatty Acid-Induced Conformational Transitions and Aggregation of the Repeat Domain of Tau. Molecules, 2020, 25, 2716.	1.7	15
130	Molecular Evolution and Phylogeny of Sipunculan Hemerythrins. Journal of Molecular Evolution, 2006, 62, 32-41.	0.8	14
131	Molecular Basis of the Bohr Effect in Arthropod Hemocyanin. Journal of Biological Chemistry, 2008, 283, 31941-31948.	1.6	13
132	Worm-Like Ising Model for Protein Mechanical Unfolding under the Effect of Osmolytes. Biophysical Journal, 2012, 102, 342-350.	0.2	13
133	Comparison of the X-ray absorption properties of the binuclear active site of molluscan and arthropodan hemocyanins. Journal of Biological Inorganic Chemistry, 2002, 7, 120-128.	1.1	12
134	Paramagnetic Properties of the Halide-Bound Derivatives of Oxidised Tyrosinase Investigated by 1H NMR Spectroscopy. Chemistry - A European Journal, 2006, 12, 7668-7675.	1.7	12
135	Molecular Insights and Functional Implication of LRRK2 Dimerization. Advances in Neurobiology, 2017, 14, 107-121.	1.3	12
136	Fibrils of $\hat{l}\pm$ -Synuclein Abolish the Affinity of Cu ²⁺ -Binding Site to His50 and Induce Hopping of Cu ²⁺ lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.	1.9	12
137	Cobalt(II) Substituted Derivatives of Carcinus maenas Hemocyanin: Â Magnetic Characterization, Magnetooptic, and Kinetic Studies Regarding the Geometry of the Active Site. Inorganic Chemistry, 1996, 35, 7482-7492.	1.9	11
138	New aspects of the reactivity of tyrosinase. Micron, 2004, 35, 141-142.	1.1	11
139	Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Archives of Biochemistry and Biophysics, 2017, 627, 46-55.	1.4	11
140	LRRK2 as a target for modulating immune system responses. Neurobiology of Disease, 2022, 169, 105724.	2.1	11
141	The Oxidation of Hemocyanin. Kinetics, Reaction Mechanism and Characterization of Met-Hemocyanin Product. FEBS Journal, 1995, 232, 98-105.	0.2	9
142	Isolation of the met-derivative intermediate in the catalase-like activity of deoxygenated Octopus vulgaris hemocyanin. Journal of Inorganic Biochemistry, 1998, 72, 211-215.	1.5	9
143	Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte Chemie - International Edition, 2021, 60, 5173-5178.	7.2	9
144	Patients Stratification Strategies to Optimize the Effectiveness of Scavenging Biogenic Aldehydes: Towards a Neuroprotective Approach for Parkinson's Disease. Current Neuropharmacology, 2021, 19, 1618-1639.	1.4	9

#	Article	IF	Citations
145	Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson's disease-like phenotype. Molecular Therapy, 2022, 30, 1465-1483.	3.7	9
146	Cloning, expression, purification, and spectroscopic analysis of the fragment 57–102 of human α-synuclein. Protein Expression and Purification, 2005, 39, 90-96.	0.6	8
147	Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod Hemocyanin. Journal of Biological Chemistry, 2010, 285, 19338-19345.	1.6	8
148	Neuronal Proteins as Targets of 3-Hydroxykynurenine: Implications in Neurodegenerative Diseases. ACS Chemical Neuroscience, 2019, 10, 3731-3739.	1.7	8
149	Peptides as Modulators of & Deptides as Modulators of & De	0.4	7
150	The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.	1.1	7
151	The Binding of Cd(II) to the Hemocyanin of the Mediterranean Crab Carcinus maenas. Archives of Biochemistry and Biophysics, 1993, 302, 78-84.	1.4	6
152	Investigation of Solid and Solution Structures of N-Substituted Cu(II) Salicyldimines by X-Ray Absorption Spectroscopy. Inorganic Chemistry, 1995, 34, 2377-2381.	1.9	6
153	Comprehensive Structural and Thermodynamic Analysis of Prefibrillar WT α-Synuclein and Its G51D, E46K, and A53T Mutants by a Combination of Small-Angle X-ray Scattering and Variational Bayesian Weighting. Journal of Chemical Information and Modeling, 2020, 60, 5265-5281.	2.5	6
154	Ditopic Chelators of Dicopper Centers for Enhanced Tyrosinases Inhibition. Chemistry - A European Journal, 2021, 27, 4384-4393.	1.7	6
155	The Binding of Azide to Copper-Containing and Cobalt-Containing Forms of Hemocyanin from the Mediterranean Crab Carcinus Aestuarii. FEBS Journal, 1997, 247, 688-694.	0.2	5
156	Single-Molecule Force Spectroscopy of Chimeric Polyprotein Constructs Containing Intrinsically Disordered Domains., 2012, 896, 47-56.		5
157	Too much for your own good: Excessive dopamine damages neurons and contributes to Parkinson's disease. Journal of Neurochemistry, 2021, 158, 833-836.	2.1	5
158	Low temperature optical spectroscopy of cobalt-substituted hemocyanin from Carcinus maenas. European Biophysics Journal, 1993, 22, 157.	1.2	4
159	Nitrite Reductase Activity of DeoxyCarcinus maenasHemocyanin:Â Formation of the Half-Met Derivative. Inorganic Chemistry, 1996, 35, 1393-1394.	1.9	4
160	Interaction and coordination geometries for $Ag(I)$ in the two metal sites of hemocyanin. FEBS Journal, 2000, 267, 1754-1760.	0.2	4
161	What are the structural features of the active site that define binuclear copper proteins function?. Micron, 2004, 35, 143-145.	1.1	4
162	Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells. Neurotoxicity Research, 2019, 36, 746-755.	1.3	4

#	Article	IF	Citations
163	Circular dichroism and fluorescence studies to probe the conformational properties of Rhus vernicifera laccase. Inorganica Chimica Acta, 1992, 193, 237-243.	1.2	3
164	A Novel Prion Protein-Tyrosine Hydroxylase Interaction. CNS and Neurological Disorders - Drug Targets, 2014, 13, 896-908.	0.8	3
165	Insights into the oligomerization process of the C-terminal domain of human plasma membrane Ca2+-ATPase. Archives of Biochemistry and Biophysics, 2011, 506, 194-200.	1.4	2
166	Semisynthetic and Enzymeâ€Mediated Conjugate Preparations Illuminate the Ubiquitinationâ€Dependent Aggregation of Tau Protein. Angewandte Chemie, 2020, 132, 6669-6673.	1.6	2
167	Alpha-synuclein pathology and enteric glia in advanced Parkinson's disease: A study from gastrointestinal biopsies. Journal of the Neurological Sciences, 2021, 429, 119460.	0.3	2
168	Waterâ€Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain <i>Locus Coeruleus</i> . Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
169	Structural role of the copper ions in the dinuclear active site of Carcinus aestuarii hemocyanin. Micron, 2004, 35, 43-44.	1.1	1
170	Raman, UV–vis, and CD Spectroscopic Studies of Dodecameric Oxyhemocyanin from <i>Carcinus aestuarii</i> . Chemistry Letters, 2011, 40, 1360-1362.	0.7	1
171	Metal lons, Dopamine and Oxidaitive Stress in Parkinson's Disease. Impact, 2017, 2017, 9-11.	0.0	1
172	Photoresponsive Prionâ€Mimic Foldamer to Induce Controlled Protein Aggregation. Angewandte Chemie, 2021, 133, 5233-5238.	1.6	1
173	Alpha-synuclein and neuroinflammation in Parkinson's disease., 2020,, 431-446.		1
174	Waterâ€Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain <i>Locus Coeruleus</i>). Angewandte Chemie, 0, , .	1.6	1
175	Cobalt-substituted derivatives of Carcinus hemocyanin. Biology of Metals, 1990, 3, 90-92.	1.1	0
176	Structural properties, conformational stability and oxygen binding properties of Penaeus monodon hemocyanin. Micron, 2004, 35, 53-54.	1.1	0
177	Insights on Channel-Like Activity of Membrane Bound Alpha-Synuclein. Biophysical Journal, 2010, 98, 109a.	0.2	0
178	Interactions of metal ions with \hat{l}_{\pm} synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		0
179	NADH is an Endogenous Reporter for Alpha-Synuclein Aggregation in Live Cells. Biophysical Journal, 2014, 106, 56a.	0.2	0
180	Protective effects of superoxide dismutation activity in genetic models of Parkinson's disease. Parkinsonism and Related Disorders, 2016, 22, e88.	1.1	0

#	Article	IF	CITATIONS
181	Entrapment and characterization of functional allosteric conformers of hemocyanin in sol–gel matrices. RSC Advances, 2016, 6, 16868-16881.	1.7	O