Geoffrey A Ozin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1402396/publications.pdf

Version: 2024-02-01

246 papers

20,692 citations

9264 74 h-index 140 g-index

266 all docs 266 docs citations

266 times ranked 18390 citing authors

#	Article	IF	CITATIONS
1	Reclamation of Oily Wastewater at High Temperatures Using Thermosetting Polyurethane-Nanosilicon Sponges. ACS Applied Polymer Materials, 2022, 4, 1544-1550.	4.4	4
2	Solar Urea: Towards a Sustainable Fertilizer Industry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
3	Solar Urea: Towards a Sustainable Fertilizer Industry. Angewandte Chemie, 2022, 134, .	2.0	9
4	Stable Cu Catalysts Supported by Twoâ€dimensional SiO ₂ with Strong Metal–Support Interaction. Advanced Science, 2022, 9, e2104972.	11.2	25
5	A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68, 826-834.	12.9	7
6	Solar CO2hydrogenation by photocatalytic foams. Chemical Engineering Journal, 2022, 435, 134864.	12.7	16
7	New black indium oxideâ€"tandem photothermal CO2-H2 methanol selective catalyst. Nature Communications, 2022, 13, 1512.	12.8	47
8	Silica samurai: Aristocrat of energy and environmental catalysis. Chem Catalysis, 2022, 2, 1893-1918.	6.1	6
9	Continuous reactor for renewable methanol. Green Chemistry, 2021, 23, 340-353.	9.0	9
10	Enhanced CO ₂ Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO ₂ Nanotubes. Nano Letters, 2021, 21, 1311-1319.	9.1	35
11	Perovskite, the Chameleon CO2 Photocatalyst. Cell Reports Physical Science, 2021, 2, 100300.	5. 6	4
12	The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nature Communications, 2021, 12, 395.	12.8	170
13	Persistent CO2 photocatalysis for solar fuels in the dark. Nature Sustainability, 2021, 4, 466-473.	23.7	74
14	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	14.6	164
15	CO ₂ Footprint of Thermal Versus Photothermal CO ₂ Catalysis. Small, 2021, 17, e2007025.	10.0	35
16	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	6.3	21
17	Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6, 807-814.	39.5	198
18	Construction of New Active Sites: Cu Substitution Enabled Surface Frustrated Lewis Pairs over Calcium Hydroxyapatite for CO ₂ Hydrogenation. Advanced Science, 2021, 8, e2101382.	11,2	25

#	Article	IF	Citations
19	Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nature Communications, 2021, 12, 5745.	12.8	108
20	Waveguide photoreactor enhances solar fuels photon utilization towards maximal optoelectronic – photocatalytic synergy. Nature Communications, 2021, 12, 402.	12.8	19
21	Photocatalytic dry reforming: what is it good for?. Energy and Environmental Science, 2021, 14, 3098-3109.	30.8	33
22	Postâ€Illumination Photoconductivity Enables Extension of Photoâ€Catalysis after Sunset. Advanced Energy Materials, 2021, 11, 2101566.	19.5	20
23	Near-Perfect Absorbing Copper Metamaterial for Solar Fuel Generation. Nano Letters, 2021, 21, 9124-9130.	9.1	23
24	Solar methanol energy storage. Nature Catalysis, 2021, 4, 934-942.	34.4	32
25	The next big thing for silicon nanostructures – CO ₂ photocatalysis. Faraday Discussions, 2020, 222, 424-432.	3.2	13
26	Surface-engineered sponges for recovery of crude oil microdroplets from wastewater. Nature Sustainability, 2020, 3, 136-143.	23.7	94
27	High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 2020, $11,5149$.	12.8	82
28	Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.	9.1	25
29	Anchoring Ba II to Pd/H y WO 3â^' x Nanowires Promotes a Photocatalytic Reverse Water–Gas Shift Reaction. Chemistry - A European Journal, 2020, 26, 12355-12358.	3.3	2
30	Plasmonic Titanium Nitride Facilitates Indium Oxide CO ₂ Photocatalysis. Small, 2020, 16, e2005754.	10.0	32
31	Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications, 2020, 11, 6095.	12.8	129
32	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	11.2	55
33	Kinetics and Mechanism of Turanite Reduction by Hydrogen. Journal of Physical Chemistry C, 2020, 124, 18356-18365.	3.1	3
34	Shining light on CO ₂ : from materials discovery to photocatalyst, photoreactor and process engineering. Chemical Society Reviews, 2020, 49, 5648-5663.	38.1	91
35	How to make an efficient gas-phase heterogeneous CO ₂ hydrogenation photocatalyst. Energy and Environmental Science, 2020, 13, 3054-3063.	30.8	52
36	Flash Solid–Solid Synthesis of Silicon Oxide Nanorods. Small, 2020, 16, 2001435.	10.0	2

#	Article	IF	Citations
37	Hydrogen Spillover to Oxygen Vacancy of TiO _{2–<i>x</i>} H _{<i>y</i>} /Fe: Breaking the Scaling Relationship of Ammonia Synthesis. Journal of the American Chemical Society, 2020, 142, 17403-17412.	13.7	91
38	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	21.0	109
39	Black indium oxide a photothermal CO2 hydrogenation catalyst. Nature Communications, 2020, 11, 2432.	12.8	192
40	Solution–Liquid–Solid Growth and Catalytic Applications of Silica Nanorod Arrays. Advanced Science, 2020, 7, 2000310.	11,2	22
41	Hybrid Photo- and Thermal Catalyst System for Continuous CO ₂ Reduction. ACS Applied Materials & Materia	8.0	22
42	Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots. Nano Letters, 2020, 20, 1491-1498.	9.1	27
43	ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. Journal of Materials Chemistry A, 2020, 8, 8868-8874.	10.3	30
44	Pd@H _{<i>y</i>} WO _{3â€"<i>x</i>} Nanowires Efficiently Catalyze the CO ₂ Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Amp; Interfaces, 2019, 11, 5610-5615.	8.0	52
45	Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie - International Edition, 2019, 58, 14850-14854.	13.8	21
46	Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10, 3169.	12.8	304
47	Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst. Advanced Science, 2019, 6, 1902170.	11.2	20
48	Frontispiece: Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
49	Frontispiz: Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie, 2019, 131, .	2.0	0
50	Building a Bridge from Papermaking to Solar Fuels. Angewandte Chemie, 2019, 131, 14992-14996.	2.0	4
51	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	34.4	234
52	Cu Atoms on Nanowire Pd/H _{<i>y</i>} WO _{3â€"<i>x</i>} Bronzes Enhance the Solar Reverse Water Gas Shift Reaction. Journal of the American Chemical Society, 2019, 141, 14991-14996.	13.7	40
53	Living Atomically Dispersed Cu Ultrathin TiO ₂ Nanosheet CO ₂ Reduction Photocatalyst. Advanced Science, 2019, 6, 1900289.	11.2	128
54	Polymorph selection towards photocatalytic gaseous CO2 hydrogenation. Nature Communications, 2019, 10, 2521.	12.8	102

#	Article	IF	CITATIONS
55	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	12.8	104
56	Room‶emperature Activation of H ₂ by a Surface Frustrated Lewis Pair. Angewandte Chemie - International Edition, 2019, 58, 9501-9505.	13.8	72
57	5th Anniversary Article: Towards Solar Methanol: Past, Present, and Future (Adv. Sci. 8/2019). Advanced Science, 2019, 6, 1970048.	11.2	0
58	Crowd oil not crude oil. Nature Communications, 2019, 10, 1818.	12.8	58
59	Singleâ€Stimulusâ€Induced Modulation of Multiple Optical Properties. Advanced Materials, 2019, 31, e1900388.	21.0	39
60	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	11.2	63
61	CO ₂ Photoreduction: Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970134.	11.2	3
62	Roomâ€Temperature Activation of H ₂ by a Surface Frustrated Lewis Pair. Angewandte Chemie, 2019, 131, 9601-9605.	2.0	18
63	Theoretical Investigation: 2D N-Graphdiyne Nanosheets as Promising Anode Materials for Li/Na Rechargeable Storage Devices. ACS Applied Nano Materials, 2019, 2, 127-135.	5.0	56
64	Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nature Catalysis, 2019, 2, 46-54.	34.4	116
65	Principles of photothermal gas-phase heterogeneous CO ₂ catalysis. Energy and Environmental Science, 2019, 12, 1122-1142.	30.8	300
66	Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmonâ€Enhanced TiO ₂ Photoelectrodes. Angewandte Chemie - International Edition, 2018, 57, 5278-5282.	13.8	365
67	Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmonâ€Enhanced TiO ₂ Photoelectrodes. Angewandte Chemie, 2018, 130, 5376-5380.	2.0	45
68	Oxygen Evolution Catalysis with Mössbauerite—A Trivalent Ironâ€Only Layered Double Hydroxide. Chemistry - A European Journal, 2018, 24, 9004-9008.	3.3	15
69	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1369-1381.	24.0	148
70	Rýcktitelbild: Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes (Angew. Chem. 19/2018). Angewandte Chemie, 2018, 130, 5656-5656.	2.0	0
71	Highly Efficient Ambient Temperature CO ₂ Photomethanation Catalyzed by Nanostructured RuO ₂ on Silicon Photonic Crystal Support. Advanced Energy Materials, 2018, 8, 1702277.	19.5	58
72	Solar Fuels: Highly Efficient Ambient Temperature CO ₂ Photomethanation Catalyzed by Nanostructured RuO ₂ on Silicon Photonic Crystal Support (Adv. Energy Mater. 9/2018). Advanced Energy Materials, 2018, 8, 1870041.	19.5	7

#	Article	IF	CITATIONS
73	Green Syngas by Solar Dry Reforming. Joule, 2018, 2, 571-575.	24.0	42
74	Band Engineering of Carbon Nitride Monolayers by N-Type, P-Type, and Isoelectronic Doping for Photocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11143-11151.	8.0	92
75	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^³} <i>><ub>x</ub></i> OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science. 2018. 5. 1700732.	11.2	91
76	Enhanced photothermal reduction of gaseous CO ₂ over silicon photonic crystal supported ruthenium at ambient temperature. Energy and Environmental Science, 2018, 11, 3443-3451.	30.8	83
77	Structure-Directing Lone Pairs: Synthesis and Structural Characterization of SnTiO ₃ . Chemistry of Materials, 2018, 30, 8932-8938.	6.7	27
78	Tuning Cu/Cu ₂ O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. Angewandte Chemie - International Edition, 2018, 57, 15415-15419.	13.8	175
79	Greening Ammonia toward the Solar Ammonia Refinery. Joule, 2018, 2, 1055-1074.	24.0	603
80	Solar Fuels: Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â°'} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ (Adv. Sci. 6/2018). Advanced Science, 2018, 5, 1870034.	11,2	3
81	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie, 2018, 130, 12540-12544.	2.0	14
82	Innenrücktitelbild: Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering (Angew. Chem. 38/2018). Angewandte Chemie, 2018, 130, 12765-12765.	2.0	0
83	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1382.	24.0	9
84	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	13.8	160
85	Sizeâ€Tunable Photothermal Germanium Nanocrystals. Angewandte Chemie, 2017, 129, 6426-6431.	2.0	6
86	Sizeâ€Tunable Photothermal Germanium Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 6329-6334.	13.8	47
87	UVâ€Blocking Photoluminescent Silicon Nanocrystal/Polydimethylsiloxane Composites. Advanced Optical Materials, 2017, 5, 1700237.	7.3	17
88	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie - International Edition, 2017, 56, 7847-7852.	13.8	252
89	Heterogeneous catalytic hydrogenation of CO ₂ by metal oxides: defect engineering – perfecting imperfection. Chemical Society Reviews, 2017, 46, 4631-4644.	38.1	304
90	Efficient Electrocatalytic Reduction of CO ₂ by Nitrogenâ€Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO ₂ Refinery. Angewandte Chemie, 2017, 129, 7955-7960.	2.0	78

#	Article	IF	CITATIONS
91	Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles. Scientific Reports, 2017, 7, 43731.	3.3	10
92	Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. Chemistry of Materials, 2017, 29, 3663-3670.	6.7	8
93	Tailoring CO ₂ Reduction with Doped Silicon Nanocrystals. Advanced Sustainable Systems, 2017, 1, 1700118.	5.3	15
94	Sandwichâ€Type Nanocomposite of Reduced Graphene Oxide and Periodic Mesoporous Silica with Vertically Aligned Mesochannels of Tunable Pore Depth and Size. Advanced Functional Materials, 2017, 27, 1704066.	14.9	14
95	Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153.	21.0	139
96	Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO ₂ with High Activity and Tailored Selectivity. Advanced Science, 2017, 4, 1700252.	11.2	97
97	Graphene Nanocomposites: Sandwichâ€√ype Nanocomposite of Reduced Graphene Oxide and Periodic Mesoporous Silica with Vertically Aligned Mesochannels of Tunable Pore Depth and Size (Adv. Funct.) Tj ETQq1 1	0 17489 4314	1 r g BT /Overl
98	Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO ₂ with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 2017, 4, .	11.2	2
99	Synthesis of Black TiO <i>_x</i> Nanoparticles by Mg Reduction of TiO ₂ Nanocrystals and their Application for Solar Water Evaporation. Advanced Energy Materials, 2017, 7, 1601811.	19.5	326
100	Silicon Nanocrystals: It's Simply a Matter of Size. ChemNanoMat, 2016, 2, 847-855.	2.8	11
101	Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8011-E8020.	7.1	89
102	Spatial Separation of Charge Carriers in In _{<i>sub>2</i>} O _{3–<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	14.6	118
103	Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels. ACS Nano, 2016, 10, 9017-9025.	14.6	109
104	Photocatalytic Properties of All Four Polymorphs of Nanostructured Iron Oxyhydroxides. ChemNanoMat, 2016, 2, 1047-1054.	2.8	38
105	Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO ₂ Hydrogenation Catalysis. ACS Catalysis, 2016, 6, 5764-5770.	11.2	80
106	Silicon Nanocrystals: Cationic Silicon Nanocrystals with Colloidal Stability, pHâ€Independent Positive Surface Charge and Size Tunable Photoluminescence in the Nearâ€Infrared to Red Spectral Range (Adv.) Tj ETQq(0 0 10 27gBT	Overlock 10
107	Visible and Nearâ€Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO ₂ over Nanostructured Pd@Nb ₂ O ₅ . Advanced Science, 2016, 3, 1600189.	11.2	133
108	Metadynamics-Biased ab Initio Molecular Dynamics Study of Heterogeneous CO ₂ Reduction via Surface Frustrated Lewis Pairs. ACS Catalysis, 2016, 6, 7109-7117.	11.2	78

#	Article	IF	CITATIONS
109	Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nature Communications, 2016, 7, 12553.	12.8	93
110	Carbon Dioxide Reduction: Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2 O5 (Adv. Sci. 10/2016). Advanced Science, 2016, 3, .	11.2	1
111	Porous NIR Photoluminescent Silicon Nanocrystalsâ€POSS Composites. Advanced Functional Materials, 2016, 26, 5102-5110.	14.9	31
112	Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO ₂ Reduction. Chemistry of Materials, 2016, 28, 4160-4168.	6.7	52
113	Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. Journal of Physical Chemistry C, 2016, 120, 12999-13012.	3.1	32
114	Silicon monoxide – a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals. Nanoscale, 2016, 8, 3678-3684.	5.6	30
115	Permanently porous hydrogen-bonded frameworks of rod-like thiophenes, selenophenes, and tellurophenes capped with MIDA boronates. Dalton Transactions, 2016, 45, 9754-9757.	3.3	12
116	Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2016, 138, 1206-1214.	13.7	210
117	Nanomaterials: Exploring the Possibilities and Limitations of a Nanomaterials Genome (Small $1/2015$). Small, $2015, 11, 63-63$.	10.0	0
118	A Highlyâ€Ordered 3D Covalent Fullerene Framework. Angewandte Chemie - International Edition, 2015, 54, 7577-7581.	13.8	19
119	Silicon Nanocrystals: Size-Dependent Oxidation of Monodisperse Silicon Nanocrystals with Allylphenylsulfide Surfaces (Small 3/2015). Small, 2015, 11, 262-262.	10.0	0
120	Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H ₂ Treatment. ChemSusChem, 2015, 8, 1557-1567.	6.8	51
121	Throwing New Light on the Reduction of CO ₂ . Advanced Materials, 2015, 27, 1957-1963.	21.0	145
122	Illuminating CO ₂ reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In ₂ O _{3â^x} (OH) _y . Physical Chemistry Chemical Physics, 2015, 17, 14623-14635.	2.8	186
123	You can't have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy and Environmental Science, 2015, 8, 1682-1684.	30.8	22
124	Synthesis of poly(spirosilabifluorene) copolymers and their improved stability in blue emitting polymer LEDs over non-spiro analogs. Polymer Chemistry, 2015, 6, 3781-3789.	3.9	12
125	Switchingâ€On Quantum Size Effects in Silicon Nanocrystals. Advanced Materials, 2015, 27, 746-749.	21.0	43
126	Sizeâ€Selective Separation and Purification of "Waterâ€Solubleâ€Organically Capped Brightly Photoluminescent Silicon Nanocrystals. Particle and Particle Systems Characterization, 2015, 32, 301-306.	2.3	10

#	Article	IF	Citations
127	The Rational Design of a Singleâ€Component Photocatalyst for Gasâ€Phase CO ₂ Reduction Using Both UV and Visible Light. Advanced Science, 2014, 1, 1400013.	11.2	182
128	Photomethanation of Gaseous CO ₂ over Ru/Silicon Nanowire Catalysts with Visible and Nearâ€Infrared Photons. Advanced Science, 2014, 1, 1400001.	11.2	150
129	Quiescent hydrothermal synthesis of reduced graphene oxide–periodic mesoporous silica sandwich nanocomposites with perpendicular mesochannel alignments. Adsorption, 2014, 20, 267-274.	3.0	11
130	Nanometerâ€Scale Precision Tuning of 3D Photonic Crystals Made Possible Using Polyelectrolytes with Controlled Short Chain Length and Narrow Polydispersity. Advanced Materials Interfaces, 2014, 1, 1300051.	3.7	3
131	Non-wettable, Oxidation-Stable, Brightly Luminescent, Perfluorodecyl-Capped Silicon Nanocrystal Film. Journal of the American Chemical Society, 2014, 136, 15849-15852.	13.7	32
132	Fe2O3/Cu2O heterostructured nanocrystals. Journal of Materials Chemistry A, 2014, 2, 8525-8533.	10.3	19
133	Synthesis of water-soluble Î ² -NaYF4 nanocrystals in a green way. CrystEngComm, 2014, 16, 6526-6529.	2.6	4
134	Enhancing photovoltaics with broadband high-transparency glass using porosity-tuned multilayer silica nanoparticle anti-reflective coatings. RSC Advances, 2014, 4, 31188-31195.	3 . 6	15
135	Artificial Photosynthesis: Solar Fuels Nanomaterials. Microscopy and Microanalysis, 2014, 20, 404-405.	0.4	0
136	Atomic and Electronic Structure of \hat{I}^3 Fe2O3/Cu2O Heterostructured Nanocrystals. Microscopy and Microanalysis, 2014, 20, 410-411.	0.4	1
137	See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics. Applied Physics Letters, 2013, 103, 221109.	3.3	24
138	Pure Blue Emitting Poly(3,6-dimethoxy-9,9-dialkylsilafluorenes) Prepared via Nickel-Catalyzed Cross-Coupling of Diarylmagnesate Monomers. Macromolecules, 2013, 46, 6794-6805.	4.8	15
139	Hydrosilylation kinetics of silicon nanocrystals. Chemical Communications, 2013, 49, 11361.	4.1	20
140	Channel Crossing by a Catalytic Nanomotor. ChemCatChem, 2013, 5, 2798-2801.	3.7	13
141	Spin of a Nanotech Spin-Off. Advanced Engineering Materials, 2013, 15, 8-18.	3.5	1
142	Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO ₂ solar cells. Journal of Materials Chemistry, 2012, 22, 1265-1269.	6.7	255
143	Absolute quantum yields in NaYF4:Er,Yb upconverters – synthesis temperature and power dependence. Journal of Materials Chemistry, 2012, 22, 24330.	6.7	31
144	Organic Light-Emitting Diodes: Silicon Nanocrystal OLEDs: Effect of Organic Capping Group on Performance (Small 23/2012). Small, 2012, 8, 3542-3542.	10.0	1

#	Article	IF	CITATIONS
145	Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals. Nano Letters, 2012, 12, 337-342.	9.1	299
146	Discovery and evaluation of a single source selenium sulfide precursor for the synthesis of alloy PbSxSe1â^'x nanocrystals. Journal of Materials Chemistry, 2012, 22, 5984.	6.7	9
147	Germanium nanocrystal doped inverse crystalline silicon opal. Journal of Materials Chemistry, 2011, 21, 15895.	6.7	15
148	Two-Photon Poly(phenylenevinylene) DFB Laser. Chemistry of Materials, 2011, 23, 805-809.	6.7	36
149	5.2: Photonic Crystal Display Materials. Digest of Technical Papers SID International Symposium, 2011, 42, 40-41.	0.3	1
150	The effect of solvent in evaporation-induced self-assembly: A case study of benzene periodic mesoporous organosilica. Science China Chemistry, 2011, 54, 1920-1925.	8.2	2
151	From Ideas to Innovation: Nanochemistry as a Case Study. Small, 2011, 7, 49-54.	10.0	7
152	Photonic Structures: Hierarchical Nanoparticle Bragg Mirrors: Tandem and Gradient Architectures (Small 24/2011). Small, 2011, 7, 3402-3402.	10.0	0
153	Nanotechnologyâ€Enabled Closed Loop Insulin Delivery Device: In Vitro and In Vivo Evaluation of Glucoseâ€Regulated Insulin Release for Diabetes Control. Advanced Functional Materials, 2011, 21, 73-82.	14.9	113
154	The Photonic Nose: Smelling Chemicals with Structural Color. , 2011, , .		0
155	Photoconductivity in inverse silicon opals enhanced by slow photon effect: Yet another step towards optically amplified silicon photonic crystal solar cells. Applied Physics Letters, 2011, 98, 072106.	3.3	17
156	Photonic crystal display materials. , 2010, , .		1
157	Infrared magnetic response in a random silicon carbide micropowder. Physical Review B, 2009, 79, .	3.2	41
158	Tailoring the Electrical Properties of Inverse Silicon Opals ―A Step Towards Optically Amplified Silicon Solar Cells. Advanced Materials, 2009, 21, 559-563.	21.0	40
159	Stacking the Nanochemistry Deck: Structural and Compositional Diversity in Oneâ€Dimensional Photonic Crystals. Advanced Materials, 2009, 21, 1641-1646.	21.0	223
160	Highly Ordered Magnetic Ceramic Nanorod Arrays from a Polyferrocenylsilane by Nanoimprint Lithography with Anodic Aluminum Oxide Templates. Chemistry of Materials, 2009, 21, 1781-1783.	6.7	37
161	Color from colorless nanomaterials: Bragg reflectors made of nanoparticles. Journal of Materials Chemistry, 2009, 19, 3500.	6.7	95
162	Heterogeneous photocatalysis with inverse titania opals: probing structural and photonic effects. Journal of Materials Chemistry, 2009, 19, 2675.	6.7	70

#	Article	IF	Citations
163	P-Ink and Elast-Ink Lab to Market. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2010-2010.	1.2	0
164	Silicon Photovoltaics Using Conducting Photonic Crystal Backâ€Reflectors. Advanced Materials, 2008, 20, 1577-1582.	21.0	84
165	Clay Bragg Stack Optical Sensors. Advanced Materials, 2008, 20, 4079-4084.	21.0	139
166	Spatially Localized Photoluminescence at 1.5 Micrometers Wavelength in Direct Laser Written Optical Nanostructures. Advanced Materials, 2008, 20, 4097-4102.	21.0	7
167	Slow photons in the fast lane in chemistry. Journal of Materials Chemistry, 2008, 18, 369-373.	6.7	135
168	Synergy of Slow Photon and Chemically Amplified Photochemistry in Platinum Nanocluster-Loaded Inverse Titania Opals. Journal of the American Chemical Society, 2008, 130, 5420-5421.	13.7	137
169	Er doped As <inf>2</inf> S <inf>3</inf> photoresist for 3-D direct laser fabrication of 3-D nanostructures. , 2008, , .		0
170	P-Ink: Intelligent Color. , 2007, , .		0
171	Pore architecture affects photocatalytic activity of periodic mesoporous nanocrystalline anatase thin films. Journal of Materials Chemistry, 2007, 17, 82-89.	6.7	106
172	Cryogenic Inorganic Chemistry: A Review of Metal-Gas Reactions as Studied by Matrix-Isolation Infrared and Raman Spectroscopic Techniques. Progress in Inorganic Chemistry, 2007, , 105-172.	3.0	23
173	Highly Selective Wet Etch for High-Resolution Three-Dimensional Nanostructures in Arsenic Sulfide All-Inorganic Photoresist. Chemistry of Materials, 2007, 19, 4213-4221.	6.7	24
174	Plasma within Templates:  Molding Flexible Nanocrystal Solids into Multifunctional Architectures. Nano Letters, 2007, 7, 3864-3868.	9.1	21
175	Polymer-Stabilized Divanadium. Inorganic Syntheses, 2007, , 116-123.	0.3	2
176	Micro-optical Spectroscopy of Stacking Faults in Colloidal Photonic Crystal Films. AIP Conference Proceedings, 2007, , .	0.4	1
177	Photonic-crystal full-colour displays. Nature Photonics, 2007, 1, 468-472.	31.4	822
178	Synthesis and Layer-by-Layer Assembly of Water-Soluble Polyferrocenylsilane Polyelectrolytes. ACS Symposium Series, 2006, , 334-355.	0.5	1
179	From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nature Materials, 2006, 5, 179-184.	27.5	392
180	Fabrication of three-dimensional photonic quasicrystals for the near-infrared spectral region. , 2006, , .		0

#	Article	IF	Citations
181	Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region. Applied Physics Letters, 2005, 86, 053108.	3.3	46
182	"Smart―Defects in Colloidal Photonic Crystals. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	1
183	PbS Nanocrystal "Plasma-Polymerization― Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
184	Engineering porosity in bifunctional periodic mesoporous organosilicas with MT- and DT-type silica building blocks. Journal of Materials Chemistry, 2005, 15, 764.	6.7	13
185	Synthesis and characterization of highly amine functionalized mesoporous organosilicas by an "all-in-one―approach. Journal of Materials Chemistry, 2005, 15, 4010.	6.7	40
186	Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). Journal of Materials Chemistry, 2005, 15, 3716.	6.7	252
187	Vapor swellable colloidal photonic crystals with pressure tunability. Journal of Materials Chemistry, 2005, 15, 133-138.	6.7	42
188	Tungsten inverse opals: The influence of absorption on the photonic band structure in the visible spectral region. Applied Physics Letters, 2004, 84, 224-226.	3.3	61
189	Tunable Microcellular Morphologies from Poly(ferrocenylsilane) Ceramic Precursors Foamed in Supercritical CO2. Macromolecular Chemistry and Physics, 2004, 205, 2398-2408.	2.2	13
190	Towards the synthetic all-optical computer: science fiction or reality?. Journal of Materials Chemistry, 2004, 14, 781-794.	6.7	120
191	Ordered 2D arrays of ferromagnetic Fe/Co nanoparticle rings from a highly metallized metallopolymer precursor. Journal of Materials Chemistry, 2004, 14, 1686.	6.7	7 3
192	Non-aqueous synthesis of mesostructured tin dioxide. Journal of Materials Chemistry, 2003, 13, 969-974.	6.7	51
193	The synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticles. Journal of Materials Chemistry, 2003, 13, 328-334.	6.7	51
194	Making sense out of sulfated tin dioxide mesostructures. Journal of Materials Chemistry, 2003, 13, 1406.	6.7	12
195	Towards photonic ink (P-ink): a polychrome, fast response metallopolymer gel photonic crystal device. Macromolecular Symposia, 2003, 196, 63-69.	0.7	9
196	Internal photonic crystal lattice structures of planarized opal-patterned chips probed by laser scanning confocal fluorescence microscopy. Journal of Materials Chemistry, 2002, 12, 966-969.	6.7	5
197	Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. Journal of Materials Chemistry, 2002, 12, 3452-3457.	6.7	40
198	Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:Â Synthesis, Characterization, Properties and in-Situ Selective Hydroborationâ 'Alcoholysis Reactions of Functional Groups. Journal of the American Chemical Society, 2001, 123, 8520-8530.	13.7	260

#	Article	IF	Citations
199	Title is missing!. Journal of Materials Chemistry, 2001, 11, 3202-3206.	6.7	95
200	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 707, 551.	0.1	1
201	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
202	Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405, 437-440.	27.8	1,512
203	Panoscopic materials: synthesis over â€~all' length scales. Chemical Communications, 2000, , 419-432.	4.1	183
204	New nanocomposites: putting organic function "inside―the channel walls of periodic mesoporous silica. Journal of Materials Chemistry, 2000, 10, 1751-1755.	6.7	166
205	Shaped Ceramics with Tunable Magnetic Properties from Metal-Containing Polymers. Science, 2000, 287, 1460-1463.	12.6	266
206	Self-Assembly of Microporous Thiogermanate Frameworks. Journal of Chemical Education, 2000, 77, 630.	2.3	4
207	Layer-by-Layer Self-Assembly of Organicâ^'Organometallic Polymer Electrostatic Superlattices Using Poly(ferrocenylsilanes). Langmuir, 2000, 16, 9609-9614.	3.5	68
208	Ring-Opening Polymerization of a [1]Silaferrocenophane Within the Channels of Mesoporous Silica: Poly(ferrocenylsilane)-MCM-41 Precursors to Magnetic Iron Nanostructures. Advanced Materials, 1998, 10, 144-149.	21.0	109
209	The Role of Defects in the Formation of Mesoporous Silica Fibers, Films, and Curved Shapes. Advanced Materials, 1998, 10, 883-887.	21.0	144
210	A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures. Angewandte Chemie - International Edition, 1998, 37, 46-62.	13.8	279
211	Chalcogenide Distribution in Microporous Layered Tin(IV) Thioselenide, TMA2Sn3SxSe7-x, Materials. Journal of Physical Chemistry B, 1998, 102, 2356-2366.	2.6	18
212	A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures. Angewandte Chemie - International Edition, 1998, 37, 46-62.	13.8	4
213	Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386, 692-695.	27.8	675
214	Effect of microgravity on the crystallization of a self-assembling layered material. Nature, 1997, 388, 857-860.	27.8	31
215	Mesoporous silica with micrometer-scale designs. Advanced Materials, 1997, 9, 811-814.	21.0	97
216	Mixed Surfactant Assemblies in the Synthesis of Mesoporous Silicas. Chemistry of Materials, 1996, 8, 2188-2193.	6.7	76

#	Article	IF	CITATIONS
217	Spectroscopy of Iron Germanium Sulfide Open-Framework Materials and Precursors. Materials Research Society Symposia Proceedings, 1996, 431, 165.	0.1	3
218	Bones about skeletons. Advanced Materials, 1996, 8, 184-184.	21.0	2
219	Thermally Stable Selfâ€assembling Openâ€Frameworks: Isostructural Cs ⁺ and (CH ₃) ₄ N ⁺ Iron Germanium Sulfides. Chemische Berichte, 1996, 129, 283-287.	0.2	56
220	Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379, 703-705.	27.8	705
221	Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature, 1996, 381, 589-592.	27.8	566
222	Synthesis of inorganic materials with complex form. Nature, 1996, 382, 313-318.	27.8	1,130
223	Imaging the surfaces of nanoporous semiconductors by atomic force microscopy. Advanced Materials, 1995, 7, 64-68.	21.0	36
224	Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature, 1995, 378, 47-50.	27.8	358
225	The zeolate ligand; zeolite encapsulated semiconductor nanomaterials. Macromolecular Symposia, 1994, 80, 45-61.	0.7	10
226	Intrazeolite Topotaxy. Advanced Materials, 1992, 4, 11-22.	21.0	48
227	Doping And Band-Gap Engineering Of An Intrazeolite Tungsten(Vi) Oxide Supralatiice. Materials Research Society Symposia Proceedings, 1991, 233, 109.	0.1	3
228	Advanced Zeolite, Materials Science. Angewandte Chemie International Edition in English, 1989, 28, 359-376.	4.4	342
229	Photophysics of atomic magnesium isolated in solid methane and perdeuteromethane. I. Optical absorption of an impurity species in a quantum solid. Journal of Chemical Physics, 1988, 89, 1839-1843.	3.0	8
230	Photophysics of atomic magnesium isolated in solid methane and perdeuteromethane. II. Temperature dependence of steady state and timeâ€resolved luminescence. Journal of Chemical Physics, 1988, 89, 1844-1857.	3.0	11
231	FT—Far IR Spectroscopic Studies of Alkali and Alkaline Earth Linde Type A Zeolites. ACS Symposium Series, 1988, , 136-149.	0.5	8
232	Photochemistry of Transition-Metal Atoms: Reactions with Molecular Hydrogen and Methane in Low-Temperature Matrices. Angewandte Chemie International Edition in English, 1986, 25, 1072-1085.	4.4	32
233	Fourier Transform Far-Infrared (FT-Far-IR) Spectroscopy of Silver Atoms and Silver Clusters Entrapped in Zeolite NaY. Angewandte Chemie International Edition in English, 1983, 22, 791-792.	4.4	1
234	Solution Phase Metal Atom Preparation of Catalytically Active Zeolite-Encapsulated Metal Clusters; Characterization and Application to the Selective Reduction of Carbon Monoxide to Butene. Angewandte Chemie International Edition in English, 1983, 22, 898-919.	4.4	7

#	Article	IF	CITATIONS
235	Fourier Transform Far Infrared Spectroscopy of Silver Atoms and Silver Clusters Entrapped in Sodium Y Zeolite. Angewandte Chemie International Edition in English, 1983, 22, 1075-1087.	4.4	0
236	Intrazeolitic and Rare Gas Isolated Silver Atom and Silver Cluster Spectroscopy, Photoprocesses, and Support Interactions. ACS Symposium Series, 1983, , 409-437.	0.5	6
237	Dynamic Processes of Metal Atoms and Small Metal Clusters in Solid Supports. ACS Symposium Series, 1983, , 303-328.	0.5	4
238	Selective CH Bond Activation in Ethane Using Photoexcited Cu Atoms. Angewandte Chemie International Edition in English, 1982, 21, 211-211.	4.4	13
239	Arene-Metal Clusters: Metal Atom-Bis(arene)metal Solution Phase Chemistry. Angewandte Chemie International Edition in English, 1982, 21, 212-212.	4.4	3
240	Selective CH Bond Activation in Ethane Using Photoexcited Copper Atoms. Angewandte Chemie International Edition in English, 1982, 21, 369-380.	4.4	5
241	Cu-H2 Photochemistry in the Matrix; ESR, FTIR, UV/VIS Spectroscopic and Kinetic Studies. Angewandte Chemie International Edition in English, 1982, 21, 380-381.	4.4	14
242	Arene-Metal Clusters; Metal Atom-Bis(arene) Metal Solution Phase Chemistry. Angewandte Chemie International Edition in English, 1982, 21, 381-392.	4.4	2
243	Copper Atom-Dihydrogen Matrix Photochemistry; An ESR, FTIR, UV-VIS Absorption Spectroscopic and Kinetic Study. Angewandte Chemie International Edition in English, 1982, 21, 785-797.	4.4	5
244	Metal Atom Olefin Chemistry; Interaction of Group VIII Metal Atoms with Ethylene. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 105-106.	0.9	4
245	Rhodium Atom Chemistry. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 101-102.	0.9	0
246	Synthetic self-propelled nanorotors. , 0, .		1