
Seungho Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1401936/publications.pdf Version: 2024-02-01

SELINCHO CHO

#	Article	IF	CITATIONS
1	Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structures. Journal of Physical Chemistry C, 2008, 112, 12769-12776.	1.5	320
2	High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors and Actuators B: Chemical, 2009, 141, 239-243.	4.0	186
3	Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis. CrystEngComm, 2010, 12, 3929.	1.3	175
4	Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities. Langmuir, 2011, 27, 10243-10250.	1.6	159
5	Precursor Effects of Citric Acid and Citrates on ZnO Crystal Formation. Langmuir, 2009, 25, 3825-3831.	1.6	146
6	Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Materials, 2014, 2, .	2.2	120
7	Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation. Chemistry of Materials, 2013, 25, 184-189.	3.2	106
8	High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 2020, 11, 5509.	5.8	103
9	Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy, 2018, 45, 398-406.	8.2	95
10	Porous ZnO–ZnSe nanocomposites for visible light photocatalysis. Nanoscale, 2012, 4, 2066.	2.8	94
11	Aqueousâ€Solution Route to Zinc Telluride Films for Application to CO ₂ Reduction. Angewandte Chemie - International Edition, 2014, 53, 5852-5857.	7.2	91
12	Exposed Crystal Face Controlled Synthesis of 3D ZnO Superstructures. Langmuir, 2010, 26, 14255-14262.	1.6	90
13	Anionâ€Doped Mixed Metal Oxide Nanostructures Derived from Layered Double Hydroxide as Visible Light Photocatalysts. Advanced Functional Materials, 2013, 23, 2348-2356.	7.8	86
14	Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nature Communications, 2016, 7, 12373.	5.8	81
15	Highly Fluorescent and Stable Quantum Dot-Polymer-Layered Double Hydroxide Composites. Chemistry of Materials, 2013, 25, 1071-1077.	3.2	69
16	Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. Journal of Materials Chemistry A, 2016, 4, 10203-10211.	5.2	67
17	Lead-free relaxor thin films with huge energy density and low loss for high temperature applications. Nano Energy, 2020, 71, 104536.	8.2	57
18	Large-Scale Fabrication of Sub-20-nm-Diameter ZnO Nanorod Arrays at Room Temperature and Their Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 10452-10458.	1.5	50

SEUNGHO CHO

#	Article	lF	CITATIONS
19	Formation of Amorphous Zinc Citrate Spheres and Their Conversion to Crystalline ZnO Nanostructures. Langmuir, 2011, 27, 371-378.	1.6	49
20	Single-Crystalline Thin Films for Studying Intrinsic Properties of BiFeO ₃ –SrTiO ₃ Solid Solution Photoelectrodes in Solar Energy Conversion. Chemistry of Materials, 2015, 27, 6635-6641.	3.2	44
21	Simultaneous Synthesis of Al-Doped ZnO Nanoneedles and Zinc Aluminum Hydroxides through Use of a Seed Layer. Crystal Growth and Design, 2008, 8, 4553-4558.	1.4	42
22	Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion. Journal of Materials Chemistry, 2011, 21, 17816.	6.7	40
23	Strategy for Synthesizing Quantum Dot-Layered Double Hydroxide Nanocomposites and Their Enhanced Photoluminescence and Photostability. Langmuir, 2013, 29, 441-447.	1.6	40
24	The effects of vitamin C on ZnO crystal formation. CrystEngComm, 2010, 12, 968-976.	1.3	37
25	An exceptionally facile method to produce layered double hydroxides on a conducting substrate and their application for solar water splitting without an external bias. Energy and Environmental Science, 2014, 7, 2301.	15.6	37
26	Shape-Selective Fabrication of Zinc Phosphate Hexagonal Bipyramids via a Disodium Phosphate-Assisted Sonochemical Route. Crystal Growth and Design, 2009, 9, 3544-3547.	1.4	30
27	Self-Assembled Heteroepitaxial Oxide Nanocomposite for Photoelectrochemical Solar Water Oxidation. Chemistry of Materials, 2016, 28, 3017-3023.	3.2	28
28	Sonochemical Synthesis of Amorphous Zinc Phosphate Nanospheres. Bulletin of the Korean Chemical Society, 2009, 30, 2280-2282.	1.0	28
29	Fabrication of ZnO nanoneedle arrays by direct microwave irradiation. Materials Letters, 2009, 63, 739-741.	1.3	27
30	N-Doped ZnS Nanoparticles Prepared through an Inorganicâ^'Organic Hybrid Complex ZnS·(piperazine) _{0.5} . Journal of Physical Chemistry C, 2009, 113, 20445-20451.	1.5	27
31	Self-Assembled Gold Nanoparticle–Mixed Metal Oxide Nanocomposites for Self-Sensitized Dye Degradation under Visible Light Irradiation. Langmuir, 2012, 28, 17530-17536.	1.6	27
32	Photocatalytic Synthesis of Pure and Waterâ€Dispersible Graphene Monosheets. Chemistry - A European Journal, 2012, 18, 2762-2767.	1.7	27
33	Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays. Nanoscale, 2010, 2, 2199.	2.8	26
34	In Situ Fabrication of Density-Controlled ZnO Nanorod Arrays on a Flexible Substrate Using Inductively Coupled Plasma Etching and Microwave Irradiation. Journal of Physical Chemistry C, 2008, 112, 17760-17763.	1.5	24
35	Design of a Vertical Composite Thin Film System with Ultralow Leakage To Yield Large Converse Magnetoelectric Effect. ACS Applied Materials & Interfaces, 2018, 10, 18237-18245.	4.0	24
36	Synthesis of hierarchical hexagonal zinc oxide/zinc aluminium hydroxide heterostructures through epitaxial growth using microwave irradiation. CrystEngComm, 2009, 11, 1650.	1.3	23

SEUNGHO CHO

#	Article	IF	CITATIONS
37	Morphology-controlled synthesis of CuO nano- and microparticles using microwave irradiation. Korean Journal of Chemical Engineering, 2012, 29, 243-248.	1.2	22
38	Origin of Improved Photoelectrochemical Water Splitting in Mixed Perovskite Oxides. Advanced Energy Materials, 2018, 8, 1801972.	10.2	22
39	All-Bismuth-Based Oxide Tandem Cell for Solar Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 6694-6699.	2.5	22
40	Solution-Based Epitaxial Growth of ZnO Nanoneedles on Single-Crystalline Zn Plates. Crystal Growth and Design, 2010, 10, 1289-1295.	1.4	21
41	The reason for an upper limit to the height of spinnable carbon nanotube forests. Journal of Materials Science, 2013, 48, 6897-6904.	1.7	20
42	Formation of zinc aluminum mixed metal oxide nanostructures. Journal of Alloys and Compounds, 2011, 509, 8770-8778.	2.8	19
43	Selective, Stable, Biasâ€Free, and Efficient Solar Hydrogen Peroxide Production on Inorganic Layered Materials. Advanced Functional Materials, 2022, 32, .	7.8	19
44	Quantum dot–layered double hydroxide composites for near-infrared emitting codes. Journal of Materials Chemistry C, 2014, 2, 450-457.	2.7	17
45	Formation and Stepwise Self-Assembly of Cadmium Chalcogenide Nanocrystals to Colloidal Supra-Quantum Dots and the Superlattices. Chemistry of Materials, 2016, 28, 5329-5335.	3.2	17
46	Catalytic materials for efficient electrochemical production of hydrogen peroxide. APL Materials, 2020, 8, .	2.2	16
47	Synthesis of density-controlled ZnO nanoneedle arrays on a flexible substrate by addition of Al salts and use of microwave irradiation. Materials Letters, 2009, 63, 2025-2028.	1.3	13
48	Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity. Nanoscale, 2011, 3, 3841.	2.8	13
49	Achieving ferromagnetic insulating properties in La _{0.9} Ba _{0.1} MnO ₃ thin films through nanoengineering. Nanoscale, 2020, 12, 9255-9265.	2.8	12
50	Synthesis of crystalline TiO2 nanostructure arrays by direct microwave irradiation on a metal substrate. Journal of Crystal Growth, 2010, 312, 1785-1788.	0.7	11
51	Turning refuse plastic into multi-walled carbon nanotube forest. Science and Technology of Advanced Materials, 2012, 13, 025004.	2.8	10
52	Use of Mesoscopic Host Matrix to Induce Ferrimagnetism in Antiferromagnetic Spinel Oxide. Advanced Functional Materials, 2018, 28, 1706220.	7.8	10
53	Facile and Fast Synthesis of Single-Crystalline Fractal Zinc Structures through a Solution Phase Reaction and Their Conversion to Zinc Oxide. Langmuir, 2009, 25, 10223-10229.	1.6	9
54	Control of structural disorder in spinel ceramics derived from layered double hydroxides. Ceramics International, 2020, 46, 6594-6599.	2.3	9

SEUNGHO CHO

#	Article	IF	CITATIONS
55	A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides. Cell Reports Physical Science, 2022, 3, 100702.	2.8	9
56	A method for synthesizing ZnO–carbonaceous species nanocomposites, and their conversion to quasi-single crystal mesoporous ZnO nanostructures. RSC Advances, 2012, 2, 566-572.	1.7	8
57	Facile fabrication of two-dimensional inorganic nanostructures and their conjugation to nanocrystals. Journal of Materials Chemistry C, 2013, 1, 4497.	2.7	8
58	Selective phase transformation of layered double hydroxides into mixed metal oxides for catalytic CO oxidation. Cell Reports Physical Science, 2021, 2, 100628.	2.8	8
59	Single crystalline zinc structures synthesized spontaneously in solution. Journal of Materials Chemistry, 2010, 20, 6982.	6.7	7
60	"Continuous―Method for the Fast Screening of Thermodynamic Promoters of Gas Hydrates Using a Quartz Crystal Microbalance. Energy & Fuels, 2012, 26, 767-772.	2.5	6
61	A method for covering a substrate with highly-oriented single crystalline hexagonal zinc structures under ambient pressure and room temperature. Chemical Communications, 2009, , 6053.	2.2	5
62	A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal Growth and Design, 2011, 11, 5615-5620.	1.4	5
63	Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods. Journal of Colloid and Interface Science, 2011, 361, 436-442.	5.0	5
64	Heterojunction Area-Controlled Inorganic Nanocrystal Solar Cells Fabricated Using Supra-Quantum Dots. ACS Applied Materials & Interfaces, 2018, 10, 43768-43773.	4.0	5
65	Facile conversion of bulk metal surface to metal oxide single-crystalline nanostructures by microwave irradiation: Formation of pure or Cr-doped hematite nanostructure arrays. Thin Solid Films, 2010, 518, 5110-5114.	0.8	4
66	Nanoporous Films and Nanostructure Arrays Created by Selective Dissolution of Waterâ€ S oluble Materials. Advanced Science, 2018, 5, 1800851.	5.6	4
67	Selective Synthesis of SiC and SiOxNanowires by Direct Microwave Irradiation. Japanese Journal of Applied Physics, 2011, 50, 025001.	0.8	4
68	Selective Synthesis of SiC and SiOxNanowires by Direct Microwave Irradiation. Japanese Journal of Applied Physics, 2011, 50, 025001.	0.8	3
69	A One-Batch Synthetic Protocol To Produce Bimodal Aspect Ratio ZnO Crystallites. Crystal Growth and Design, 2012, 12, 994-999.	1.4	3
70	Light-Induced Cleaning of CdS and ZnS Nanoparticles: Superiority to Annealing as a Postsynthetic Treatment of Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 15427-15431.	1.5	3
71	Spontaneous stepwise formation of polar-facet-dominant ZnO crystals for enhanced catalytic H2O2 generation. Applied Surface Science, 2021, 561, 150061.	3.1	3
72	Size-Dependent Photovoltaic Performance of CdSe Supraquantum Dot/Polymer Hybrid Solar Cells: "Goldilocks Problem―Resolved by Tuning the Band Alignment Using Surface Ligands. Journal of Physical Chemistry C, 2020, 124, 25775-25783.	1.5	2

#	Article	IF	CITATIONS
73	Synthesis of vertically aligned single-crystalline α-(FexCr1â^'x)2O3 nanostructure arrays by microwave irradiation and their growth mechanism. CrystEngComm, 2010, 12, 3235.	1.3	1
74	Homoepitaxial growth of ZnO nanostructures from bulk ZnO. Journal of Colloid and Interface Science, 2021, 586, 135-141.	5.0	0