
## Anton Vidal Ferran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1401762/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Valorisation of mixtures of linear alkenes using cobalt-mediated isomerisation and hydroformylation chemistries. Catalysis Science and Technology, 2022, 12, 3219-3227.                          | 2.1  | 3         |
| 2  | Supramolecular Regulation in Enantioselective Catalysis. Series on Chemistry, Energy and the Environment, 2022, , 59-94.                                                                         | 0.3  | 0         |
| 3  | Separation of Volatile Organic Compounds in TAMOF-1. ACS Applied Materials & Interfaces, 2022, 14, 30772-30785.                                                                                  | 4.0  | 3         |
| 4  | Differentiation of Epoxide Enantiomers in the Confined Spaces of an Homochiral Cu(II) Metalâ€Organic<br>Framework by Kinetic Resolution. Chemistry - A European Journal, 2021, 27, 16956-16965.  | 1.7  | 1         |
| 5  | Enhanced Performance of Zirconiumâ€Doped Ceria Catalysts for the Methoxycarbonylation of Anilines.<br>Chemistry - A European Journal, 2020, 26, 16129-16137.                                     | 1.7  | 6         |
| 6  | A low temperature aqueous formate fuel cell using cobalt hexacyanoferrate as a non-noble metal oxidation catalyst. Sustainable Energy and Fuels, 2020, 4, 6227-6233.                             | 2.5  | 8         |
| 7  | Selective functionalisation of aromatic alcohols with supramolecularly regulated gold( <scp>i</scp> ) catalysts. Organic Chemistry Frontiers, 2020, 7, 1626-1634.                                | 2.3  | 9         |
| 8  | Access to α-Aminophosphonic Acid Derivatives and Phosphonopeptides by [Rh(P–OP)]-Catalyzed<br>Stereoselective Hydrogenation. Journal of Organic Chemistry, 2020, 85, 14779-14784.                | 1.7  | 8         |
| 9  | Exploiting Substrate Diversity for Preparing Synthetically Valuable Sulfoxides via Asymmetric<br>Hydrogenative Kinetic Resolution. European Journal of Organic Chemistry, 2020, 2020, 4331-4338. | 1.2  | 8         |
| 10 | Palladium Complexes of Methylene-Bridged <i>P</i> -Stereogenic, Unsymmetrical Diphosphines.<br>Organometallics, 2020, 39, 2511-2525.                                                             | 1.1  | 8         |
| 11 | Supramolecularly regulated copper-bisoxazoline catalysts for the efficient insertion of carbenoid species into hydroxyl bonds. Chemical Communications, 2020, 56, 6364-6367.                     | 2.2  | 5         |
| 12 | Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography.<br>Journal of the American Chemical Society, 2019, 141, 14306-14316.                              | 6.6  | 93        |
| 13 | Kinetic Treatments for Catalyst Activation and Deactivation Processes based on Variable Time<br>Normalization Analysis. Angewandte Chemie, 2019, 131, 10295-10299.                               | 1.6  | 15        |
| 14 | Mechanistic Insights into the Ceria-Catalyzed Synthesis of Carbamates as Polyurethane Precursors.<br>ACS Catalysis, 2019, 9, 7708-7720.                                                          | 5.5  | 14        |
| 15 | Stereoselective Catalytic Synthesis of P-Stereogenic Oxides via Hydrogenative Kinetic Resolution.<br>Organic Letters, 2019, 21, 7019-7023.                                                       | 2.4  | 20        |
| 16 | Halogen bonding effects on the outcome of reactions at metal centres. Chemical Communications, 2019, 55, 2380-2383.                                                                              | 2.2  | 23        |
| 17 | Kinetic Treatments for Catalyst Activation and Deactivation Processes based on Variable Time<br>Normalization Analysis. Angewandte Chemie - International Edition, 2019, 58, 10189-10193.        | 7.2  | 46        |
| 18 | Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy and Environmental Science, 2019, 12, 1309-1316.                             | 15.6 | 106       |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Efficient modular phosphorus-containing ligands for stereoselective catalysis. Pure and Applied Chemistry, 2019, 91, 3-15.                                                                                                                        | 0.9 | 6         |
| 20 | <i>o</i> , <i>p</i> â€Dimethoxybiphenyl Arylamine Substituted Porphyrins as Holeâ€Transport Materials:<br>Electrochemical, Photophysical, and Carrier Mobility Characterization. European Journal of Organic<br>Chemistry, 2018, 2018, 2064-2070. | 1.2 | 7         |
| 21 | Benzothiadiazole Substituted Semiconductor Molecules for Organic Solar Cells: The Effect of the<br>Solvent Annealing Over the Thin Film Hole Mobility Values. Journal of Physical Chemistry C, 2018, 122,<br>13782-13789.                         | 1.5 | 14        |
| 22 | XBphos-Rh: a halogen-bond assembled supramolecular catalyst. Chemical Science, 2018, 9, 3644-3648.                                                                                                                                                | 3.7 | 42        |
| 23 | Structural Investigations on Enantiopure P–OP Ligands: A Highâ€Performing P–OP Ligand for<br>Rhodium atalysed Hydrogenations. European Journal of Organic Chemistry, 2018, 2018, 1525-1532.                                                       | 1.2 | 7         |
| 24 | Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite<br>Solar Cells. Accounts of Chemical Research, 2018, 51, 869-880.                                                                             | 7.6 | 121       |
| 25 | Ni-Catalysed Intramolecular [4+4]-cycloadditions of bis-dienes towards eight-membered fused bicyclic<br>systems: a combined experimental and computational study. Catalysis Science and Technology, 2018, 8,<br>5251-5258.                        | 2.1 | 3         |
| 26 | Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4203-4210.                                                                                                                         | 2.5 | 7         |
| 27 | Syntheses, characterisation and solid-state study of alkali and ammonium BArF salts. RSC Advances, 2017, 7, 32833-32841.                                                                                                                          | 1.7 | 16        |
| 28 | Asymmetric Hydrogenation of Sevenâ€Membered C=N ontaining Heterocycles and Rationalization of the<br>Enantioselectivity. Chemistry - A European Journal, 2016, 22, 10607-10613.                                                                   | 1.7 | 38        |
| 29 | Stereoselective Rh-Catalyzed Hydrogenative Desymmetrization of Achiral Substituted 1,4-Dienes.<br>Organic Letters, 2016, 18, 2836-2839.                                                                                                           | 2.4 | 16        |
| 30 | Supramolecularly fine-regulated enantioselective catalysts. Chemical Communications, 2016, 52, 11038-11051.                                                                                                                                       | 2.2 | 38        |
| 31 | Correlation between the Selectivity and the Structure of an Asymmetric Catalyst Built on a Chirally<br>Amplified Supramolecular Helical Scaffold. Journal of the American Chemical Society, 2016, 138,<br>4908-4916.                              | 6.6 | 93        |
| 32 | Palladium-Based Supramolecularly Regulated Catalysts for Asymmetric Allylic Substitutions.<br>Organometallics, 2016, 35, 528-533.                                                                                                                 | 1.1 | 22        |
| 33 | A Practical Synthesis of Rhodium Precatalysts for Enantioselective Hydrogenative Transformations.<br>Synthesis, 2016, 48, 997-1001.                                                                                                               | 1.2 | 7         |
| 34 | Supramolecularly Regulated Ligands for Asymmetric Hydroformylations and Hydrogenations.<br>Chemistry - A European Journal, 2015, 21, 11417-11426.                                                                                                 | 1.7 | 46        |
| 35 | Substrate Activation in the Catalytic Asymmetric Hydrogenation of <i>N</i> â€Heteroarenes. European<br>Journal of Organic Chemistry, 2015, 2015, 5293-5303.                                                                                       | 1.2 | 57        |
| 36 | Enantiopure bisphosphine ligands with appended crown ether groups as regulation sites for<br>Rh-mediated hydrogenations. Tetrahedron, 2015, 71, 4490-4494.                                                                                        | 1.0 | 24        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Supramolecular Catalysis. , 2015, , .                                                                                                                                                                              |      | 1         |
| 38 | Diarylamino-substituted tetraarylethene (TAE) as an efficient and robust hole transport material for<br>11% methyl ammonium lead iodide perovskite solar cells. Chemical Communications, 2015, 51,<br>13980-13982. | 2.2  | 61        |
| 39 | Hydrogenative Kinetic Resolution of Vinyl Sulfoxides. Organic Letters, 2015, 17, 4114-4117.                                                                                                                        | 2.4  | 32        |
| 40 | Asymmetric Hydroformylation of Heterocyclic Olefins Mediated by Supramolecularly Regulated Rhodium-Bisphosphite Complexes. Journal of Organic Chemistry, 2015, 80, 10397-10403.                                    | 1.7  | 37        |
| 41 | MaxPHOS Ligand: PH/NH Tautomerism and Rhodium―Catalyzed Asymmetric Hydrogenations. Advanced Synthesis and Catalysis, 2014, 356, 795-804.                                                                           | 2.1  | 55        |
| 42 | Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chemical Society Reviews, 2014, 43, 1660-1733.                                             | 18.7 | 605       |
| 43 | Supramolecular catalysis. Part 2: artificial enzyme mimics. Chemical Society Reviews, 2014, 43, 1734-1787.                                                                                                         | 18.7 | 775       |
| 44 | Ring-opening of enantiomerically pure oxa-containing heterocycles with phosphorus nucleophiles.<br>RSC Advances, 2014, 4, 58440-58447.                                                                             | 1.7  | 9         |
| 45 | Enantiopure Narrow Biteâ€Angle POP Ligands: Synthesis and Catalytic Performance in Asymmetric<br>Hydroformylations and Hydrogenations. Chemistry - A European Journal, 2014, 20, 15375-15384.                     | 1.7  | 24        |
| 46 | Asymmetric hydrogenation of unprotected indoles using iridium complexes derived from P–OP<br>ligands and (reusable) BrAֻnsted acids. Green Chemistry, 2014, 16, 1153.                                              | 4.6  | 53        |
| 47 | 1,1-P–OP Ligands with P-Stereogenic Phosphino Groups in Asymmetric Hydrogenations and<br>Hydroformylations. Organometallics, 2014, 33, 2960-2963.                                                                  | 1.1  | 22        |
| 48 | Small Bite-Angle P–OP Ligands for Asymmetric Hydroformylation and Hydrogenation. Organic Letters, 2013, 15, 3634-3637.                                                                                             | 2.4  | 43        |
| 49 | Supramolecular Catalysis. , 2013, , 457-486.                                                                                                                                                                       |      | 3         |
| 50 | Catalytic enantioselective reductive desymmetrisation of achiral and meso compounds. Chemical Communications, 2013, 49, 10666.                                                                                     | 2.2  | 39        |
| 51 | Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chemical Society Reviews, 2013, 42, 728-754.                                                          | 18.7 | 345       |
| 52 | [Ir(Pâ^'OP)]-Catalyzed Asymmetric Hydrogenation of Diversely Substituted Câ•N-Containing Heterocycles.<br>Organic Letters, 2013, 15, 2066-2069.                                                                    | 2.4  | 87        |
| 53 | Bis(phosphite) Ligands with Distal Regulation: Application in Rhodiumâ€mediated Asymmetric<br>Hydroformylations. Chemistry - A European Journal, 2013, 19, 2720-2725.                                              | 1.7  | 46        |
| 54 | Modular POP Ligands in Rhodiumâ€Mediated Asymmetric Hydrogenation: A Comparative Catalysis<br>Study. Advanced Synthesis and Catalysis, 2012, 354, 3025-3035.                                                      | 2.1  | 36        |

ANTON VIDAL FERRAN

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Crystallization-Induced Dynamic Resolution of Stereolabile Biaryl Derivatives Involving<br>Supramolecular Interactions. Crystal Growth and Design, 2012, 12, 2719-2723.                                             | 1.4  | 13        |
| 56 | New Chiral Zinc Complexes: Synthesis, Structure, and Induction of Axial Chirality. Inorganic Chemistry, 2012, 51, 8643-8645.                                                                                        | 1.9  | 12        |
| 57 | Alkoxycarbonylation of Industrially Relevant Anilines Using<br>Zn <sub>4</sub> O(O <sub>2</sub> CCH <sub>3</sub> ) <sub>6</sub> as Catalyst. Industrial &<br>Engineering Chemistry Research, 2012, 51, 16165-16170. | 1.8  | 26        |
| 58 | Allosteric Pâ•O-Based Receptors for Dicarboxylic Acids. Organic Letters, 2011, 13, 3632-3635.                                                                                                                       | 2.4  | 10        |
| 59 | Phosphineâ^'Phosphinite and Phosphineâ^'Phosphite Ligands: Preparation and Applications in Asymmetric<br>Catalysis. Chemical Reviews, 2011, 111, 2119-2176.                                                         | 23.0 | 358       |
| 60 | Chiral Rhodium Complexes Derived From Electron-Rich Phosphine-Phosphites as Asymmetric Hydrogenation Catalysts. Organometallics, 2011, 30, 6718-6725.                                                               | 1.1  | 29        |
| 61 | Enantioselective Access to Chiral Drugs by using Asymmetric Hydrogenation Catalyzed by Rh(POP)<br>Complexes. Chemistry - A European Journal, 2011, 17, 13978-13982.                                                | 1.7  | 32        |
| 62 | Modern Strategies in Supramolecular Catalysis. Advances in Catalysis, 2011, 54, 63-126.                                                                                                                             | 0.1  | 24        |
| 63 | A Bipyridineâ€Based "Nakedâ€Eye―Fluorimetric Cu <sup>2+</sup> Chemosensor. European Journal of<br>Inorganic Chemistry, 2010, 2010, 1360-1365.                                                                       | 1.0  | 21        |
| 64 | Highly Modular Pi£¿OP Ligands for Asymmetric Hydrogenation: Synthesis, Catalytic Activity, and<br>Mechanism. Chemistry - A European Journal, 2010, 16, 6495-6508.                                                   | 1.7  | 67        |
| 65 | Catalytic Hydrogenation of Norbornadiene by a Rhodium Complex in a Selfâ€Folding Cavitand.<br>Angewandte Chemie, 2010, 122, 7651-7654.                                                                              | 1.6  | 21        |
| 66 | Catalytic Hydrogenation of Norbornadiene by a Rhodium Complex in a Selfâ€Folding Cavitand.<br>Angewandte Chemie - International Edition, 2010, 49, 7489-7492.                                                       | 7.2  | 48        |
| 67 | Primary and Secondary Aminophosphines as Novel Pâ€Stereogenic Building Blocks for Ligand Synthesis.<br>Angewandte Chemie - International Edition, 2010, 49, 9452-9455.                                              | 7.2  | 95        |
| 68 | Highly modular P-OP ligands in asymmetric allylic substitution. Tetrahedron: Asymmetry, 2010, 21, 2281-2288.                                                                                                        | 1.8  | 28        |
| 69 | Asymmetric Hydrogenation of Heteroaromatic Compounds Mediated by Iridiumâ^'( <i>P-OP</i> )<br>Complexes. Organometallics, 2010, 29, 6627-6631.                                                                      | 1.1  | 62        |
| 70 | Zinc Acetates as Efficient Catalysts for the Synthesis of Bis-isocyanate Precursors. Industrial &<br>Engineering Chemistry Research, 2010, 49, 6362-6366.                                                           | 1.8  | 34        |
| 71 | Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends.<br>Physical Chemistry Chemical Physics, 2010, 12, 13047.                                                           | 1.3  | 33        |
| 72 | Towards Continuous Flow, Highly Enantioselective Allylic Amination: Ligand Design, Optimization and<br>Supporting. Advanced Synthesis and Catalysis, 2009, 351, 1539-1556.                                          | 2.1  | 75        |

ANTON VIDAL FERRAN

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Diastereoselectivity and molecular recognition of mercury(II) ions. Inorganic Chemistry Communication, 2009, 12, 131-134.                                                                                                                                     | 1.8 | 5         |
| 74 | Supramolecular-Directed Chiral Induction in Biaryl Derivatives. Journal of Organic Chemistry, 2009, 74, 8794-8797.                                                                                                                                            | 1.7 | 27        |
| 75 | A DFT/MM analysis of the effect of ligand substituents on asymmetric hydrogenation catalyzed by<br>rhodium complexes with phosphine–phosphinite ligands. Canadian Journal of Chemistry, 2009, 87,<br>1273-1279.                                               | 0.6 | 29        |
| 76 | A Phenanthroline Heteroleptic Ruthenium Complex and Its Application to Dyeâ€Sensitised Solar Cells.<br>European Journal of Inorganic Chemistry, 2008, 2008, 1955-1958.                                                                                        | 1.0 | 22        |
| 77 | Highly Modular <i>Pâ€Oâ€P</i> Ligands for Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2008, 350, 1984-1990.                                                                                                                                   | 2.1 | 49        |
| 78 | Dioxirane mediated asymmetric epoxidations: stereochemical studies via isotopic labeling. Organic and<br>Biomolecular Chemistry, 2008, 6, 2276.                                                                                                               | 1.5 | 7         |
| 79 | Structural Optimization of Enantiopure 2-Cyclialkylamino-2-aryl-1,1-diphenylethanols as Catalytic<br>Ligands for Enantioselective Additions to Aldehydes. Journal of Organic Chemistry, 2008, 73, 5340-5353.                                                  | 1.7 | 46        |
| 80 | The effect of complex stoichiometry in supramolecular chirality transfer to zinc bisporphyrin systems. Chemical Communications, 2008, , 5939.                                                                                                                 | 2.2 | 44        |
| 81 | Interfacial Charge Recombination Between eâ^'â^'TiO2 and the Iâ^'/I3â^' Electrolyte in Ruthenium<br>Heteroleptic Complexes: Dye Molecular Structureâ^'Open Circuit Voltage Relationship. Journal of the<br>American Chemical Society, 2008, 130, 13558-13567. | 6.6 | 125       |
| 82 | Exploring Substrate Scope of Shi-Type Epoxidations. Synlett, 2008, 2008, 2856-2858.                                                                                                                                                                           | 1.0 | 3         |
| 83 | Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. Journal of<br>Materials Chemistry, 2007, 17, 3037-3044.                                                                                                         | 6.7 | 156       |
| 84 | Phosphinooxazolines Derived from 3â€Aminoâ€1,2â€diols: Highly Efficient Modular <i>Pâ€N</i> Ligands.<br>Advanced Synthesis and Catalysis, 2007, 349, 2265-2278.                                                                                               | 2.1 | 35        |
| 85 | Ligand Anatomy:  Probing Remote Substituent Effects in Asymmetric Catalysis through NMR and Kinetic<br>Analysis. Organic Letters, 2006, 8, 3895-3898.                                                                                                         | 2.4 | 13        |
| 86 | (S)-2-[(R)-Fluoro(phenyl)methyl]oxirane: A General Reagent for Determining the e.e. of α-Chiral Amines<br>ChemInform, 2006, 37, no.                                                                                                                           | 0.1 | 0         |
| 87 | (S)-2-[(R)-Fluoro(phenyl)methyl]oxirane:  A General Reagent for Determining the ee of α-Chiral Amines.<br>Organic Letters, 2005, 7, 3829-3832.                                                                                                                | 2.4 | 59        |
| 88 | Practical Synthesis of Shi's Diester Fructose Derivative for Catalytic Asymmetric Epoxidation of Alkenes. Journal of Organic Chemistry, 2005, 70, 10143-10146.                                                                                                | 1.7 | 34        |
| 89 | Boron Trifluoride Induced Reactions of Phenylglycidyl Ethers: A Convenient Synthesis of Enantiopure,<br>Stereodefined Fluorohydrins ChemInform, 2004, 35, no.                                                                                                 | 0.1 | 0         |
| 90 | Boron trifluoride-induced reactions of phenylglycidyl ethers: a convenient synthesis of enantiopure, stereodefined fluorohydrins. Tetrahedron Letters, 2004, 45, 6337-6341.                                                                                   | 0.7 | 30        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Modular Bis(oxazoline) Ligands for Palladium-Catalyzed Allylic Alkylation: Unprecedented<br>Conformational Behavior of a Bis(oxazoline) Palladium η3-1,3-Diphenylallyl Complex ChemInform, 2003,<br>34, no.                                  | 0.1 | Ο         |
| 92  | Addition of Diethylzinc to Dicobalt Hexacarbonyl Complexes of α,β-Acetylenic Aldehydes with Virtually<br>Complete Enantioselectivity. A Formal Synthesis of (+)-Incrustoporin. Organic Letters, 2002, 4,<br>2381-2383.                       | 2.4 | 27        |
| 93  | Modular Bis(oxazoline) Ligands for Palladium Catalyzed Allylic Alkylation: Unprecedented<br>Conformational Behaviour of a Bis(oxazoline) Palladium 3-1,3-Diphenylallyl Complex. Chemistry - A<br>European Journal, 2002, 8, 4164-4178.       | 1.7 | 78        |
| 94  | Addition of Diethylzinc to Dicobalt Hexacarbonyl Complexes of α,βâ€Acetylenic Aldehydes with Virtually<br>Complete Enantioselectivity. A Formal Synthesis of (+)â€Incrustoporin ChemInform, 2002, 33, 77-77.                                 | 0.1 | 0         |
| 95  | Understanding NMR Multiplet Structure with WinDNMR. Journal of Chemical Education, 2000, 77, 130.                                                                                                                                            | 1.1 | 9         |
| 96  | The dual-catalyzed (amino alcoho/Lewis acid) enantioselective addition of diethylzinc to<br>N-diphenylphosphinoyl imines. Tetrahedron Letters, 1999, 40, 777-780.                                                                            | 0.7 | 39        |
| 97  | A New Family of Modular Chiral Ligands for the Catalytic Enantioselective Reduction of Prochiral<br>Ketones. Journal of Organic Chemistry, 1999, 64, 7902-7911.                                                                              | 1.7 | 69        |
| 98  | NMR Studies of Molecular Recognition by Metalloporphyrins. , 1999, , 37-44.                                                                                                                                                                  |     | 1         |
| 99  | 13C CPMAS NMR spectroscopy as a probe for porphyrin–porphyrin and host–guest interactions in the solid state. Journal of the Chemical Society Perkin Transactions II, 1998, , 715-724.                                                       | 0.9 | 10        |
| 100 | Reversing the stereochemistry of a Diels–Alder reaction: use of metalloporphyrin oligomers to control transition state stability. New Journal of Chemistry, 1998, 22, 493-502.                                                               | 1.4 | 59        |
| 101 | A Superior, Readily Available Enantiopure Ligand for the Catalytic Enantioselective Addition of Diethylzinc to α-Substituted Aldehydes. Journal of Organic Chemistry, 1998, 63, 7078-7082.                                                   | 1.7 | 115       |
| 102 | High Catalytic Activity of Chiral Amino Alcohol Ligands Anchored to Polystyrene Resins. Journal of<br>Organic Chemistry, 1998, 63, 6309-6318.                                                                                                | 1.7 | 101       |
| 103 | Stereospecific templated synthesis of a triruthenium butadiyne-linked cyclic porphyrin trimer. Journal of the Chemical Society Dalton Transactions, 1997, , 985-990.                                                                         | 1.1 | 17        |
| 104 | Ethyne-Linked Cyclic Porphyrin Oligomers:  Synthesis and Binding Properties. Journal of Organic<br>Chemistry, 1997, 62, 240-241.                                                                                                             | 1.7 | 40        |
| 105 | Stepwise Approach to Bimetalic Porphyrin Hosts:Â Spatially Enforced Coordination of a Nickel(II)<br>Porphyrin. Inorganic Chemistry, 1997, 36, 6117-6126.                                                                                     | 1.9 | 39        |
| 106 | Synthesis of a Family of Fine-Tunable New Chiral Ligands for Catalytic Asymmetric Synthesis. Ligand<br>Optimization through the Enantioselective Addition of Diethylzinc to Aldehydes. Journal of Organic<br>Chemistry, 1997, 62, 4970-4982. | 1.7 | 89        |
| 107 | Enantioselective synthesis of N-Boc-1-naphthylglycine. Tetrahedron: Asymmetry, 1997, 8, 1581-1586.                                                                                                                                           | 1.8 | 25        |
| 108 | New indane derived aminoalcohols as chiral ligands for the catalytic enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry, 1997, 8, 1559-1568.                                                                      | 1.8 | 31        |

ANTON VIDAL FERRAN

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Computer assisted, mechanism directed design of a new ligand for the highly enantioselective catalytic addition of diethylzinc to aldehydes. Tetrahedron Letters, 1997, 38, 8773-8776.             | 0.7 | 59        |
| 110 | A non-obvious reaction pathway in the formation of 2-aminobenzene-1,3-dicarbonitriles from<br>α,β-unsaturated ketones or aldehydes. Tetrahedron, 1995, 51, 235-242.                                | 1.0 | 19        |
| 111 | Two step synthesis of pyrido[2,3-d]pyrimidines from acyclic precursors. Cyclization of<br>2-cyanamino-4,6-diphenylpyridine-3-carbonitrile by Hydrogen Halides. Tetrahedron, 1995, 51, 10253-10258. | 1.0 | 10        |
| 112 | Octatetrayne-linked porphyrins: â€~stretched' cyclic dimers and trimers with very spacious cavities.<br>Journal of the Chemical Society Perkin Transactions 1, 1995, , 2275-2279.                  | 0.9 | 43        |
| 113 | A convergent approach to unsymmetrical porphyrin oligomers. Journal of the Chemical Society Chemical Communications, 1994, , 2657-2658.                                                            | 2.0 | 16        |
| 114 | Crystal structure of 3-amino-1-methyl-4,6-diphenylpyrazolo[3,4-b] -Pyridine, (C6HN3)(C6H5)2(CH3)(NH2).<br>Zeitschrift Fur Kristallographie - Crystalline Materials, 1994, 209, 773-774.            | 0.4 | 2         |
| 115 | Synthesis of 2-Cyanamino-4,6-diphenylpyridine-3-carbonitrile. Heterocycles, 1993, 36, 777.                                                                                                         | 0.4 | 4         |
| 116 | Synthesis of 4-Amino-8-cyanoquinazolines from Enones and Enals. Heterocycles, 1993, 36, 2273.                                                                                                      | 0.4 | 22        |
| 117 | A Simple Synthesis of 2-Methoxypyridine-3-carbonitriles. Heterocycles, 1993, 36, 769.                                                                                                              | 0.4 | 24        |
| 118 | Structure of 2-amino-5-methylisophthalonitrile. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 208-209.                                                             | 0.4 | 0         |
| 119 | The reaction of malononitrile with chalcone: a controversial chemical process. Tetrahedron Letters, 1991, 32, 5375-5378.                                                                           | 0.7 | 53        |
|     |                                                                                                                                                                                                    |     |           |

120 Introduction to Supramolecular Catalysis. , 0, , 1-27.

7