
Marc Svoboda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1401714/publications.pdf Version: 2024-02-01

MARC SUGRODA

#	Article	IF	CITATIONS
1	THE DROUGHT MONITOR. Bulletin of the American Meteorological Society, 2002, 83, 1181-1190.	1.7	947
2	Monitoring the 1996 Drought Using the Standardized Precipitation Index. Bulletin of the American Meteorological Society, 1999, 80, 429-438.	1.7	893
3	The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bulletin of the American Meteorological Society, 2011, 92, 485-488.	1.7	624
4	Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resources Management, 2007, 21, 763-774.	1.9	513
5	Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bulletin of the American Meteorological Society, 2018, 99, 911-919.	1.7	317
6	The effect of the length of record on the standardized precipitation index calculation. International Journal of Climatology, 2005, 25, 505-520.	1.5	273
7	Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 2016, 218-219, 230-242.	1.9	228
8	Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nature Climate Change, 2020, 10, 191-199.	8.1	210
9	Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management, 2015, 160, 106-117.	2.4	207
10	Examining Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index. Journal of Hydrometeorology, 2013, 14, 1057-1074.	0.7	205
11	An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications. Journal of Hydrometeorology, 2013, 14, 1035-1056.	0.7	194
12	Drought indicators revisited: the need for a wider consideration of environment and society. Wiley Interdisciplinary Reviews: Water, 2016, 3, 516-536.	2.8	161
13	Examining the Relationship between Drought Development and Rapid Changes in the Evaporative Stress Index. Journal of Hydrometeorology, 2014, 15, 938-956.	0.7	115
14	Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agricultural and Forest Meteorology, 2014, 191, 1-11.	1.9	83
15	The drought risk atlas: Enhancing decision support for drought risk management in the United States. Journal of Hydrology, 2015, 526, 274-286.	2.3	83
16	Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States. Journal of Hydrology, 2019, 568, 611-625.	2.3	78
17	Response of crop yield to different time-scales of drought in the United States: Spatio-temporal patterns and climatic and environmental drivers. Agricultural and Forest Meteorology, 2019, 264, 40-55.	1.9	77
18	Facilitating the Use of Drought Early Warning Information through Interactions with Agricultural Stakeholders. Bulletin of the American Meteorological Society, 2015, 96, 1073-1078.	1.7	64

Marc Svoboda

#	Article	IF	CITATIONS
19	Using Temporal Changes in Drought Indices to Generate Probabilistic Drought Intensification Forecasts. Journal of Hydrometeorology, 2015, 16, 88-105.	0.7	64
20	Developing a regional drought climatology for the Czech Republic. International Journal of Climatology, 2009, 29, 863-883.	1,5	51
21	Natural and Human Influences on the Link Between Meteorological and Hydrological Drought Indices for a Large Set of Catchments in the Contiguous United States. Water Resources Research, 2018, 54, 6005-6023.	1.7	51
22	Assessing the Evolution of Soil Moisture and Vegetation Conditions during a Flash Drought–Flash Recovery Sequence over the South-Central United States. Journal of Hydrometeorology, 2019, 20, 549-562.	0.7	50
23	Developing a Remotely Sensed Drought Monitoring Indicator for Morocco. Geosciences (Switzerland), 2018, 8, 55.	1.0	45
24	Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sensing, 2020, 12, 2091.	1.8	45
25	Assessing the Vegetation Condition Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI). Journal of Applied Meteorology and Climatology, 2015, 54, 153-169.	0.6	43
26	The Vegetation Outlook (VegOut): A New Method for Predicting Vegetation Seasonal Greenness. GIScience and Remote Sensing, 2010, 47, 25-52.	2.4	40
27	Developing a satellite-based combined drought indicator to monitor agricultural drought: a case study for Ethiopia. GIScience and Remote Sensing, 2019, 56, 718-748.	2.4	39
28	SMAP Soil Moisture Change as an Indicator of Drought Conditions. Remote Sensing, 2018, 10, 788.	1.8	32
29	Predicting U.S. Drought Monitor States Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part I: Development of a Nondiscrete USDM Index. Journal of Hydrometeorology, 2017, 18, 1943-1962.	0.7	31
30	Agricultural Drought Assessment in East Asia Using Satellite-Based Indices. Remote Sensing, 2020, 12, 444.	1.8	31
31	Establishing Relationships between Drought Indices and Wildfire Danger Outputs: A Test Case for the California-Nevada Drought Early Warning System. Climate, 2019, 7, 52.	1.2	28
32	Development of a Flash Drought Intensity Index. Atmosphere, 2021, 12, 741.	1.0	25
33	Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing, 2018, 39, 1548-1574.	1.3	21
34	Predicting the U.S. Drought Monitor Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part II: Intraseasonal Drought Intensification Forecasts. Journal of Hydrometeorology, 2017, 18, 1963-1982.	0.7	19
35	Developing a strategy for the national coordinated soil moisture monitoring network. Vadose Zone Journal, 2021, 20, e20139.	1.3	13
36	Forecasting Rapid Drought Intensification Using the Climate Forecast System (CFS). Journal of Geophysical Research D: Atmospheres, 2018, 123, 8365-8373.	1.2	11

#	Article	IF	CITATIONS
37	Critical Analysis of the Value of Drought Information and Impacts on Land Management and Public Health. Water (Switzerland), 2020, 12, 1064.	1.2	7
38	Forest Drought Response Index (ForDRI): A New Combined Model to Monitor Forest Drought in the Eastern United States. Remote Sensing, 2020, 12, 3605.	1.8	4
39	The Drought Monitor Comes of Age. Weatherwise, 2021, 74, 29-37.	0.1	2
40	Valuation of Drought Information: Understanding the Value of the US Drought Monitor in Land Management. Water (Switzerland), 2021, 13, 112.	1.2	2