Stephen J Elledge

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1400555/stephen-j-elledge-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

121 24,853 55 140 g-index

140 29,173 22.1 7 Ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
121	A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells <i>Nature Communications</i> , 2022 , 13, 256	17.4	O
120	Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation <i>Nature Communications</i> , 2022 , 13, 105	17.4	1
119	Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis <i>Science</i> , 2022 , 375, 296-301	33.3	124
118	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity <i>Cell</i> , 2022 , 185, 614-629.e21	56.2	7
117	Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1 <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
116	Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids 2021 , 9,		4
115	High-resolution epitope mapping by AllerScan reveals relationships between IgE and IgG repertoires during peanut oral immunotherapy. <i>Cell Reports Medicine</i> , 2021 , 2, 100410	18	3
114	Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. <i>Genes and Development</i> , 2021 , 35, 1527-1547	12.6	0
113	Systematic characterization of mutations altering protein degradation in human cancers. <i>Molecular Cell</i> , 2021 , 81, 1292-1308.e11	17.6	11
112	ORF10-Cullin-2-ZYG11B complex is not required for SARS-CoV-2 infection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	8
111	Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	29
110	Coordinate regulation of the senescent state by selective autophagy. <i>Developmental Cell</i> , 2021 , 56, 15	12 <u>r</u> 1, <u>5</u> 2	5. e 7
109	Structural basis for antibody inhibition of flavivirus NS1-triggered endothelial dysfunction. <i>Science</i> , 2021 , 371, 194-200	33.3	28
108	CARM1 Inhibition Enables Immunotherapy of Resistant Tumors by Dual Action on Tumor Cells and T Cells. <i>Cancer Discovery</i> , 2021 , 11, 2050-2071	24.4	14
107	CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. <i>Molecular Cell</i> , 2021 , 81, 3650-3658.e5	17.6	3
106	The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. <i>Molecular Cell</i> , 2021 , 81, 4440-4456.e7	17.6	1
105	The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. <i>Science</i> , 2021 , 373, 1327-1335	33.3	18

104	The uncharacterized SANT and BTB domain-containing protein SANBR inhibits class switch recombination. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100625	5.4	O
103	High-Throughput Screening of Kawasaki Disease Sera for Antiviral Antibodies. <i>Journal of Infectious Diseases</i> , 2020 , 222, 1853-1857	7	3
102	The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 4053-4060	11.5	50
101	A Deregulated HOX Gene Axis Confers an Epigenetic Vulnerability in KRAS-Mutant Lung Cancers. <i>Cancer Cell</i> , 2020 , 37, 705-719.e6	24.3	21
100	Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality 2020 ,		31
99	Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. <i>Science</i> , 2020 , 370,	33.3	289
98	Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. <i>Cellular and Molecular Life Sciences</i> , 2020 , 77, 1607-1622	10.3	7
97	Diversified Application of Barcoded PLATO (PLATO-BC) Platform for Identification of Protein Interactions. <i>Genomics, Proteomics and Bioinformatics</i> , 2019 , 17, 319-331	6.5	4
96	Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing. <i>Cell Reports</i> , 2019 , 28, 3435-3449.e5	10.6	12
95	MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in -, and -Mutant Melanomas. <i>Cancer Discovery</i> , 2019 , 9, 526-545	24.4	41
94	Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets. <i>Molecular Cell</i> , 2019 , 73, 885-899.e6	17.6	80
93	Temporal virus serological profiling of kidney graft recipients using VirScan. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 10899-10904	11.5	11
92	Comprehensive Profiling of HIV Antibody Evolution. <i>Cell Reports</i> , 2019 , 27, 1422-1433.e4	10.6	12
91	Sequencer Hacking Unlocks Quantitative Protein Studies. <i>Molecular Cell</i> , 2019 , 73, 863-865	17.6	
90	Tissue-specificity in cancer: The rule, not the exception. <i>Science</i> , 2019 , 363, 1150-1151	33.3	76
89	T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. <i>Cell</i> , 2019 , 178, 1016-	10 3 &æ1	3 7 8
88	Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1253-1264	12.3	15
87	Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14614-14619	11.5	10

86	A glycine-specific N-degron pathway mediates the quality control of protein -myristoylation. <i>Science</i> , 2019 , 365,	33.3	62
85	Comprehensive viromewide antibody responses by systematic epitope scanning after hematopoietic cell transplantation. <i>Blood</i> , 2019 , 134, 503-514	2.2	6
84	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. <i>Science</i> , 2019 , 366, 599-606	33.3	149
83	Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. <i>Science Advances</i> , 2019 , 5, eaay4624	14.3	34
82	Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns. <i>Cell</i> , 2018 , 173, 499-514.e23	56.2	83
81	Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. <i>Genes and Development</i> , 2018 , 32, 1188-1200	12.6	27
80	Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. <i>Cell</i> , 2018 , 172, 106-120.e21	56.2	55
79	A Druggable Genome Screen Identifies Modifiers of Esynuclein Levels via a Tiered Cross-Species Validation Approach. <i>Journal of Neuroscience</i> , 2018 , 38, 9286-9301	6.6	21
78	The Eukaryotic Proteome Is Shaped by E3IUbiquitin Ligases Targeting C-Terminal Degrons. <i>Cell</i> , 2018 , 173, 1622-1635.e14	56.2	90
77	C-Terminal End-Directed Protein Elimination by CRL2[Ubiquitin Ligases. <i>Molecular Cell</i> , 2018 , 70, 602-67	131 ,5 36	59
77 76	C-Terminal End-Directed Protein Elimination by CRL2[Jbiquitin Ligases. <i>Molecular Cell</i> , 2018 , 70, 602-67. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355,	131. 9 36	59 609
	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to	•	
76	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355, Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. <i>Arthritis and</i>	33·3 9·5	609
76 75	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355, Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. <i>Arthritis and Rheumatology</i> , 2017 , 69, 1306-1312	33·3 9·5	609 38 36
76 75 74	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355, Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. <i>Arthritis and Rheumatology</i> , 2017 , 69, 1306-1312 Aneuploidy in Cancer: Seq-ing Answers to Old Questions. <i>Annual Review of Cancer Biology</i> , 2017 , 1, 335 A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. <i>Genes and</i>	33·3 9·5 -3 : 5/4;	609 38 36
76 75 74 73	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355, Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. <i>Arthritis and Rheumatology</i> , 2017 , 69, 1306-1312 Aneuploidy in Cancer: Seq-ing Answers to Old Questions. <i>Annual Review of Cancer Biology</i> , 2017 , 1, 335 A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. <i>Genes and Development</i> , 2017 , 31, 184-196	33.3 9.5 -3/5/4;	609 38 36 42
76 75 74 73 72	Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. <i>Science</i> , 2017 , 355, Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. <i>Arthritis and Rheumatology</i> , 2017 , 69, 1306-1312 Aneuploidy in Cancer: Seq-ing Answers to Old Questions. <i>Annual Review of Cancer Biology</i> , 2017 , 1, 335 A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. <i>Genes and Development</i> , 2017 , 31, 184-196 Reply. <i>Arthritis and Rheumatology</i> , 2017 , 69, 1915-1916 Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the	33:3 9:5 -3:5;4; 12:6	609 38 36 42

(2015-2017)

68	A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant Cells. <i>Cell Reports</i> , 2017 , 20, 427-438	10.6	45
67	Functional kinomics establishes a critical node of volume-sensitive cation-Cl cotransporter regulation in the mammalian brain. <i>Scientific Reports</i> , 2016 , 6, 35986	4.9	27
66	Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E7526-E7534	4 ^{11.5}	48
65	A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. <i>Stem Cell Reports</i> , 2016 , 6, 704-716	8	35
64	Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E3676-85	11.5	10
63	Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E3667-75	11.5	37
62	A gain-of-function senescence bypass screen identifies the homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. <i>Genes and Development</i> , 2016 , 30, 293-306	12.6	18
61	Sources of Error in Mammalian Genetic Screens. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 2781-90	3.2	43
60	Functional genomics reveals that tumors with activating phosphoinositide 3-kinase mutations are dependent on accelerated protein turnover. <i>Genes and Development</i> , 2016 , 30, 2684-2695	12.6	7
59	How autophagy both activates and inhibits cellular senescence. <i>Autophagy</i> , 2016 , 12, 898-9	10.2	113
58	NatB domain-containing CRA-1 antagonizes hydrolase ACER-1 linking acetyl-CoA metabolism to the initiation of recombination during C. elegans meiosis. <i>PLoS Genetics</i> , 2015 , 11, e1005029	6	17
57	The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. <i>Science</i> , 2015 , 349, aaa5612	33.3	478
56	RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks. <i>Molecular Cell</i> , 2015 , 60, 280-93	17.6	68
55	FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. <i>Journal of Biological Chemistry</i> , 2015 , 290, 27297-27310	5.4	34
54	The DNA Damage ResponseSelf-awareness for DNA: The 2015 Albert Lasker Basic Medical Research Award. <i>JAMA - Journal of the American Medical Association</i> , 2015 , 314, 1111-2	27.4	11
53	Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. <i>Science</i> , 2015 , 348, aaa0698	33.3	231
52	Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. <i>Molecular Cell</i> , 2015 , 59, 867-81	17.6	206
51	Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. <i>Cell Host and Microbe</i> , 2015 , 18, 723-35	23.4	647

50	A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. <i>Cell Reports</i> , 2015 , 11, 1486-500	10.6	100
49	Homologous-recombination-deficient tumours are dependent on PolEmediated repair. <i>Nature</i> , 2015 , 518, 258-62	50.4	451
48	Taking the brakes off telomerase. <i>ELife</i> , 2015 , 4,	8.9	3
47	Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. <i>Cell Host and Microbe</i> , 2014 , 15, 113-24	23.4	29
46	RNAi-based functional selection identifies novel cell migration determinants dependent on PI3K and AKT pathways. <i>Nature Communications</i> , 2014 , 5, 5217	17.4	19
45	When noise makes music: HIV reactivation with transcriptional noise enhancers. <i>Genome Medicine</i> , 2014 , 6, 55	14.4	1
44	Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18631-6	11.5	64
43	Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10. <i>PLoS Pathogens</i> , 2014 , 10, e1004403	7.6	19
42	Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. <i>Cell Reports</i> , 2014 , 9, 752-66	10.6	40
41	Discovery of protein interactions using parallel analysis of translated ORFs (PLATO). <i>Nature Protocols</i> , 2014 , 9, 90-103	18.8	15
40	DNA repair. Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. <i>Science</i> , 2014 , 346, 1127-30	33.3	46
39	Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. <i>Cell</i> , 2013 , 155, 948-62	56.2	478
38	Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction. <i>Cell Reports</i> , 2013 , 5, 895-908	10.6	78
37	Protein interaction discovery using parallel analysis of translated ORFs (PLATO). <i>Nature Biotechnology</i> , 2013 , 31, 331-334	44.5	43
36	Recurrent hemizygous deletions in cancers may optimize proliferative potential. <i>Science</i> , 2012 , 337, 10	4-9 3.3	148
35	A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. <i>Science</i> , 2012 , 335, 348-53	33.3	315
34	Global identification of modular cullin-RING ligase substrates. <i>Cell</i> , 2011 , 147, 459-74	56.2	321
33	Autoantigen discovery with a synthetic human peptidome. <i>Nature Biotechnology</i> , 2011 , 29, 535-41	44.5	172

(2000-2011)

32	The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3665-70	11.5	435
31	The DNA damage response: making it safe to play with knives. <i>Molecular Cell</i> , 2010 , 40, 179-204	17.6	2828
30	Design of 240,000 orthogonal 25mer DNA barcode probes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2289-94	11.5	101
29	The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. <i>Cell</i> , 2009 , 139, 1243-54	56.2	921
28	FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. <i>Nature Structural and Molecular Biology</i> , 2008 , 15, 1138-46	17.6	183
27	Cancer proliferation gene discovery through functional genomics. <i>Science</i> , 2008 , 319, 620-4	33.3	323
26	Global protein stability profiling in mammalian cells. <i>Science</i> , 2008 , 322, 918-23	33.3	318
25	Identification of SCF ubiquitin ligase substrates by global protein stability profiling. <i>Science</i> , 2008 , 322, 923-9	33.3	147
24	Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. <i>Cell</i> , 2007 , 129, 289-301	56.2	543
23	ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. <i>Science</i> , 2007 , 316, 1160-6	33.3	2303
22	Checkpoint signaling and protein degradation. FASEB Journal, 2007, 21, A154	0.9	
21	A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. <i>Cell</i> , 2006 , 126, 529-42	56.2	250
20	Second-generation shRNA libraries covering the mouse and human genomes. <i>Nature Genetics</i> , 2005 , 37, 1281-8	36.3	522
19	Transcriptional regulation and function during the human cell cycle. <i>Nature Genetics</i> , 2001 , 27, 48-54	36.3	330
18	Mrc1 transduces signals of DNA replication stress to activate Rad53. <i>Nature Cell Biology</i> , 2001 , 3, 958-6	5523.4	419
17	Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. <i>Science</i> , 2001 , 294, 173-7	33.3	650
16	Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. <i>Nature Genetics</i> , 2000 , 25, 205-8	36.3	337
15	The DNA damage response: putting checkpoints in perspective. <i>Nature</i> , 2000 , 408, 433-9	50.4	2610

14	Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. <i>Science</i> , 1999 , 284, 662-5	33.3	345
13	Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. <i>Science</i> , 1999 , 286, 1162-6	33.3	848
12	Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. <i>Science</i> , 1999 , 286, 1166-71	33.3	466
11	Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. <i>Science</i> , 1997 , 277, 1497-501	33.3	1096
10	Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. <i>Nature</i> , 1997 , 387, 151-8	50.4	672
9	Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. <i>Genetics</i> , 1997 , 147, 1063-76	4	60
8	PAT1, an evolutionarily conserved acetyltransferase homologue, is required for multiple steps in the cell cycle. <i>Genes To Cells</i> , 1996 , 1, 923-42	2.3	20
7	Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. <i>Nature</i> , 1996 , 384, 470-4	50.4	611
6	Stopped for repairs. <i>BioEssays</i> , 1995 , 17, 545-8	4.1	68
5	A family of vectors that facilitate transposon and insertional mutagenesis of cloned genes in yeast. <i>Yeast</i> , 1994 , 10, 1267-72	3.4	32
4	Troponin T is capable of binding dystrophin via a leucine zipper. FEBS Letters, 1994, 354, 183-6	3.8	13
3	Cloning of the complete coding region for human protein phosphatase inhibitor 2 using the two hybrid system and expression of inhibitor 2 in E. coli. <i>FEBS Letters</i> , 1994 , 340, 93-8	3.8	32
2	DNA damage and cell cycle regulation of ribonucleotide reductase. <i>BioEssays</i> , 1993 , 15, 333-9	4.1	205
1	2.5 Million Person-Years of Life Have Been Lost Due to COVID-19 in the United States		5