Jan Verbesselt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1400446/publications.pdf Version: 2024-02-01

IAN VEDRESSELT

#	Article	lF	CITATIONS
1	Time series analysis for global land cover change monitoring: A comparison across sensors. Remote Sensing of Environment, 2022, 271, 112905.	4.6	30
2	Evaluating recovery metrics derived from optical time series over tropical forest ecosystems. Remote Sensing of Environment, 2022, 274, 112991.	4.6	9
3	Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing, 2022, 5, 100051.	2.2	8
4	The openEO API–Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities. Remote Sensing, 2021, 13, 1125.	1.8	32
5	Exploring Archetypes of Tropical Fire-Related Forest Disturbances Based on Dense Optical and Radar Satellite Data and Active Fire Alerts. Forests, 2021, 12, 456.	0.9	6
6	Global land characterisation using land cover fractions at 100Âm resolution. Remote Sensing of Environment, 2021, 259, 112409.	4.6	25
7	BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sensing, 2021, 13, 3308.	1.8	23
8	Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sensing of Environment, 2021, 264, 112600.	4.6	50
9	Investigating aerosol vertical distribution using CALIPSO time series over the Middle East and North Africa (MENA), Europe, and India: A BFAST-based gradual and abrupt change detection. Remote Sensing of Environment, 2021, 264, 112619.	4.6	10
10	Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102386.	1.4	10
11	Assessing the impact of bridge construction on the land use/cover and socio-economic indicator time series: A case study of Hangzhou Bay Bridge. ClScience and Remote Sensing, 2021, 58, 199-216.	2.4	6
12	Abrupt Change in Dryland Ecosystem Functioning: Recent Advances and Lessons Learnt from the U-TURN Project. , 2021, , .		0
13	Thirty Years of Land Cover and Fraction Cover Changes Over the Sudano-Sahel Using Landsat Time Series. , 2021, , .		0
14	Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series. Remote Sensing, 2020, 12, 3817.	1.8	16
15	Uncovering Dryland Woody Dynamics Using Optical, Microwave, and Field Data—Prolonged Above-Average Rainfall Paradoxically Contributes to Woody Plant Die-Off in the Western Sahel. Remote Sensing, 2020, 12, 2332.	1.8	12
16	Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sensing, 2020, 12, 2953.	1.8	33
17	Massively-Parallel Change Detection for Satellite Time Series Data with Missing Values. , 2020, , .		6
18	Assessment of Workflow Feature Selection on Forest LAI Prediction with Sentinel-2A MSI, Landsat 7 ETM+ and Landsat 8 OLI. Remote Sensing, 2020, 12, 915.	1.8	41

#	Article	IF	CITATIONS
19	Globalâ€scale characterization of turning points in arid and semiâ€arid ecosystem functioning. Global Ecology and Biogeography, 2020, 29, 1230-1245.	2.7	43
20	Tucumã: A toolbox for spatiotemporal remote sensing image analysis [Software and Data Sets]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7, 110-122.	4.9	4
21	Quantifying Australia's dryland vegetation response to flooding and drought at sub-continental scale. Remote Sensing of Environment, 2018, 212, 60-78.	4.6	29
22	Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 2018, 204, 147-161.	4.6	165
23	BFAST Explorer: An Effective Tool for Time Series Analysis. , 2018, , .		2
24	Monitoring Forest Phenology and Leaf Area Index with the Autonomous, Low-Cost Transmittance Sensor PASTiS-57. Remote Sensing, 2018, 10, 1032.	1.8	17
25	Sustainable intensification of dairy production can reduce forest disturbance in Kenyan montane forests. Agriculture, Ecosystems and Environment, 2018, 265, 307-319.	2.5	21
26	Massively-parallel break detection for satellite data. , 2018, , .		2
27	Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts. Remote Sensing, 2018, 10, 777.	1.8	43
28	Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana. Environmental Management, 2018, 62, 529-547.	1.2	35
29	Using Space-Time Features to Improve Detection of Forest Disturbances from Landsat Time Series. Remote Sensing, 2017, 9, 515.	1.8	26
30	Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring. Remote Sensing, 2017, 9, 1025.	1.8	5
31	Evaluating the Potential of PROBA-V Satellite Image Time Series for Improving LC Classification in Semi-Arid African Landscapes. Remote Sensing, 2016, 8, 987.	1.8	10
32	Monitoring Deforestation at Sub-Annual Scales as Extreme Events in Landsat Data Cubes. Remote Sensing, 2016, 8, 651.	1.8	19
33	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
34	Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?. Remote Sensing, 2016, 8, 657.	1.8	33
35	Remotely-sensed detection of effects of extreme droughts on gross primary production. Scientific Reports, 2016, 6, 28269.	1.6	64
36	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	8.1	157

#	Article	IF	CITATIONS
37	Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 318-327.	1.4	118
38	Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Global Change Biology, 2016, 22, 2801-2817.	4.2	71
39	Combining satellite data for better tropical forest monitoring. Nature Climate Change, 2016, 6, 120-122.	8.1	112
40	Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117, 227-236.	4.9	39
41	Error Sources in Deforestation Detection Using BFAST Monitor on Landsat Time Series Across Three Tropical Sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3667-3679.	2.3	16
42	Using spatial context to improve early detection of deforestation from Landsat time series. Remote Sensing of Environment, 2016, 172, 126-138.	4.6	97
43	Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series. PLoS ONE, 2016, 11, e0147121.	1.1	69
44	Detecting Clear-Cuts and Decreases in Forest Vitality Using MODIS NDVI Time Series. Remote Sensing, 2015, 7, 3588-3612.	1.8	34
45	A Bayesian Approach to Combine Landsat and ALOS PALSAR Time Series for Near Real-Time Deforestation Detection. Remote Sensing, 2015, 7, 4973-4996.	1.8	60
46	Consistent forest change maps 1981–2000 from the AVHRR time series: Case studies for South America and Indonesia. , 2015, , .		0
47	Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agricultural and Forest Meteorology, 2015, 203, 158-168.	1.9	79
48	Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107, 112-125.	4.9	91
49	Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 2015, 163, 326-340.	4.6	232
50	Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sensing of Environment, 2015, 161, 107-121.	4.6	212
51	Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment, 2015, 169, 320-334.	4.6	131
52	Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data. Remote Sensing and Digital Image Processing, 2015, , 183-202.	0.7	14
53	Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis. Journal of Environmental Management, 2015, 150, 355-366.	3.8	46
54	Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sensing of Environment, 2015, 158, 156-168.	4.6	89

#	Article	IF	CITATIONS
55	Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sensing of Environment, 2015, 156, 276-293.	4.6	141
56	Detecting Leaf Pulvinar Movements on NDVI Time Series of Desert Trees: A New Approach for Water Stress Detection. PLoS ONE, 2014, 9, e106613.	1.1	10
57	Near real-time tropical forest disturbance monitoring using Landsat time series and local expert monitoring data. , 2013, , .		1
58	Investigating assumptions of crown archetypes for modelling LiDAR returns. Remote Sensing of Environment, 2013, 134, 39-49.	4.6	35
59	Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 2159-2173.	2.3	61
60	Assessing error sources for Landsat time series analysis for tropical test sites in Viet Nam and Ethiopia. , 2013, , .		3
61	Recent trends in sea surface temperature off Mexico. Atmosfera, 2013, 26, 537-546.	0.3	21
62	Shifts in Global Vegetation Activity Trends. Remote Sensing, 2013, 5, 1117-1133.	1.8	207
63	Trends in Spring Phenology of Western European Deciduous Forests. Remote Sensing, 2013, 5, 6159-6179.	1.8	45
64	Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing, 2013, 5, 2113-2144.	1.8	354
65	Effects of clumping on modelling LiDAR waveforms in forest canopies. , 2012, , .		0
66	Synergies of multiple remote sensing data sources for REDD+ monitoring. Current Opinion in Environmental Sustainability, 2012, 4, 696-706.	3.1	140
67	Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment, 2012, 123, 98-108.	4.6	425
68	Near real-time deforestation monitoring in tropical ecosystems using satellite image time series. , 2012, , .		2
69	Trend changes in global greening and browning: contribution of shortâ€ŧerm trends to longerâ€ŧerm change. Global Change Biology, 2012, 18, 642-655.	4.2	353
70	Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environmental Research Letters, 2012, 7, 044028.	2.2	38
71	A robust approach for phenological change detection within satellite image time series. , 2011, , .		2
72	Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indicesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time Canadian Journal of Forest Research, 2011, 41. 24-34.	0.8	27

#	Article	IF	CITATIONS
73	A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sensing of Environment, 2011, 115, 3129-3152.	4.6	216
74	Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66, 17-27.	4.9	67
75	Relative Greenness Index for assessing curing of grassland fuel. Remote Sensing of Environment, 2011, 115, 1456-1463.	4.6	34
76	A Pixel Based Regeneration Index using Time Series Similarity and Spatial Context. Photogrammetric Engineering and Remote Sensing, 2010, 76, 673-682.	0.3	35
77	Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 2010, 114, 106-115.	4.6	1,270
78	Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 2010, 114, 2970-2980.	4.6	565
79	Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 270-277.	1.4	56
80	Magnitude- and Shape-Related Feature Integration in Hyperspectral Mixture Analysis to Monitor Weeds in Citrus Orchards. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 3630-3642.	2.7	34
81	Forecasting tree mortality using change metrics derived from MODIS satellite data. Forest Ecology and Management, 2009, 258, 1166-1173.	1.4	62
82	Hierarchical image segmentation based on similarity of NDVI time series. Remote Sensing of Environment, 2008, 112, 506-521.	4.6	73
83	Spatio-Temporal Segmentation Based on Subsequences of Satellite Image Time Series. , 2008, , .		1
84	Integration of Magnitude and Shape Related Features in Hyperspectral Mixture Analysis to Monitor Weeds In Citrus Orchards. , 2008, , .		0
85	Integrating plantation health surveillance and wood resource inventory systems using remote sensing. Australian Forestry, 2008, 71, 245-253.	0.3	11
86	Assessing Vegetation Regrowth after Fire Based on Time Series of SPOT-VEGETATION Data. , 2007, , .		1
87	Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment, 2007, 108, 357-368.	4.6	66
88	Monitoring herbaceous biomass and water content with SPOT VEGETATION time-series to improve fire risk assessment in savanna ecosystems. Remote Sensing of Environment, 2006, 101, 399-414.	4.6	44
89	Evaluating satellite and climate data-derived indices as fire risk indicators in savanna ecosystems. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1622-1632.	2.7	68
90	Development of indicators of vegetation recovery based on time series analysis of SPOT Vegetation data. , 2005, 5976, 99.		0

#	Article	IF	CITATIONS
91	Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems. , 2005, , .		0
92	Fire risk assessment in savanna ecosystems with multi-temporal satellite data. Communications in Agricultural and Applied Biological Sciences, 2005, 70, 23-6.	0.0	0
93	Biophysical drought metrics extraction by time series analysis of SPOT vegetation data. , 0, , .		1
94	Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 337-344.	0.2	3
95	MAPPING DISTURBANCE DYNAMICS IN WET SCLEROPHYLL FORESTS USING TIME SERIES LANDSAT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B8, 633-641.	0.2	6