Daria Szewczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1400287/publications.pdf

Version: 2024-02-01

933447 940533 24 277 10 16 citations g-index h-index papers 25 25 25 274 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites. Nature Communications, 2020, 11, 5103.	12.8	46
2	Glassy Anomalies in the Low-Temperature Thermal Properties of a Minimally Disordered Crystalline Solid. Physical Review Letters, 2017, 119, 215506.	7.8	28
3	Polymorphism of 2-Adamantanone. Crystal Growth and Design, 2014, 14, 2626-2632.	3.0	26
4	Glassy Dynamics versus Thermodynamics: The Case of 2-Adamantanone. Journal of Physical Chemistry B, 2015, 119, 8468-8474.	2.6	22
5	Glassy anomalies in the heat capacity of an ordered 2-bromobenzophenone single crystal. Physical Review B, 2018, 97, .	3.2	19
6	Phase Diagram and Cation Dynamics of Mixed MA _{1â€"<i>x</i>yc/sub>FA<i>_x</i>PbBr₃ Hybrid Perovskites. Chemistry of Materials, 2021, 33, 5926-5934.}	6.7	16
7	The low-temperature specific heat of MWCNTs. Low Temperature Physics, 2019, 45, 347-354.	0.6	15
8	Preparation and physical characteristics of graphene ceramics. Scientific Reports, 2020, 10, 11121.	3.3	13
9	Effects of site-occupation disorder on the low-temperature thermal conductivity of molecular crystals. Journal of Non-Crystalline Solids, 2015, 407, 141-148.	3.1	12
10	Influence of thermal treatment on thermal properties of adamantane derivatives. Low Temperature Physics, 2015, 41, 469-472.	0.6	11
11	Specific heat and magnetocaloric effect in Pr0.6Sr0.4â°'Ag MnO3 manganites. Intermetallics, 2018, 102, 88-93.	3.9	11
12	Electrical and thermal properties of Pr0.6Sr0.4â^'xAgxMnO3 (x = 0.05 and 0.1) manganite. Journal of Materials Science, 2020, 55, 6761-6770.	3.7	11
13	Calorimetric, NEXAFS and XPS studies of MWCNTs with low defectiveness. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 331-336.	2.1	9
14	The low-temperature specific heat of thermal reduced graphene oxide. Low Temperature Physics, 2020, 46, 301-305.	0.6	8
15	Heat capacity anomalies of the molecular crystal 1-fluoro-adamantane at low temperatures. Scientific Reports, 2021, 11, 18640.	3.3	8
16	Role of Optical Phonons and Anharmonicity in the Appearance of the Heat Capacity Boson Peak-like Anomaly in Fully Ordered Molecular Crystals. Journal of Physical Chemistry Letters, 2022, 13, 5061-5067.	4.6	7
17	Anomalous behavior of thermal conductivity at high temperatures for molecular crystals composed of flexible molecules. Journal of Physics and Chemistry of Solids, 2019, 127, 151-157.	4.0	6
18	Size effects in the heat capacity of modified MWCNTs. Thermal Science and Engineering Progress, 2021, 26, 101097.	2.7	5

#	Article	IF	CITATIONS
19	Evidence of the ferroelastic phase transition in Na2TiGeO5ceramics. Phase Transitions, 2013, 86, 301-305.	1.3	3
20	Anisotropy of the thermal conductivity of bulk melt-cast Bi-2212 superconducting tubes. Superconductor Science and Technology, 2020, 33, 025006.	3.5	1
21	Thermal properties of Er:Li2TiGeO5 ferroelastic ceramics. Ceramics International, 2014, 40, 8027-8031.	4.8	O
22	Mechanisms of self-screening in pure ice. Low Temperature Physics, 2015, 41, 459-460.	0.6	0
23	Thermal properties of Ti-doped Cu–Zn soft ferrites used as thermally actuated material for magnetizing superconductors. Journal Physics D: Applied Physics, 2016, 49, 125004.	2.8	0
24	Effect of Graphene Addition on the Thermal and Persistent Luminescence Properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 Ceramics. Materials, 2022, 15, 2606.	2.9	0