Takaaki A Koshimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/140019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serum sodium level associated with coronary artery lesions in patients with Kawasaki disease. Clinical Rheumatology, 2022, 41, 137-145.	2.2	6
2	Epidemiology and Risk Factors for Giant Coronary Artery Aneurysms Identified After Acute Kawasaki Disease. Pediatric Cardiology, 2021, 42, 969-977.	1.3	15
3	Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric Âμ-V1b receptor. Scientific Reports, 2021, 11, 15813.	3.3	2
4	Critical role of V1a vasopressin receptor in murine parturitionâ€. Biology of Reproduction, 2020, 102, 923-934.	2.7	1
5	Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. Journal of the American Society of Nephrology: JASN, 2019, 30, 946-961.	6.1	19
6	Vasopressin V1a Receptor of Renal Collecting Duct Intercalated Cells Promotes Urinary Proton Secretion. FASEB Journal, 2019, 33, 862.20.	0.5	0
7	Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Nature Neuroscience, 2018, 21, 820-833.	14.8	28
8	BRET analysis of interactions among dimerized receptor and β-arrestin. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-11-12.	0.0	0
9	V1a vasopressin receptor involved in the uterus contraction. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-11-3.	0.0	0
10	Comparative analysis of V1a and V1b receptor distribution in the mammalian brain. FASEB Journal, 2018, 32, 783.2.	0.5	0
11	Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors. Scientific Reports, 2016, 6, 25327.	3.3	6
12	Lipopolysaccharide-induced inflammation or unilateral ureteral obstruction yielded multiple types of glycosylated Lipocalin 2. Journal of Inflammation, 2016, 13, 7.	3.4	18
13	Prostaglandin D2 elicits the reversible neurite retraction in hypothalamic cell line. Biochemical and Biophysical Research Communications, 2016, 470, 804-810.	2.1	2
14	Pharmacological lineage analysis revealed the binding affinity of broad-spectrum substance P antagonists to receptors for gonadotropin-releasing peptide. European Journal of Pharmacology, 2015, 749, 98-106.	3.5	3
15	Subcellular localization and internalization of the vasopressin V1B receptor. European Journal of Pharmacology, 2015, 765, 291-299.	3.5	14
16	Identification of protein arginine N-methyltransferase 5 (PRMT5) as a novel interacting protein with the tumor suppressor protein RASSF1A. Biochemical and Biophysical Research Communications, 2015, 467, 778-784.	2.1	4
17	Basic and Clinical Pharmacology of Vasopressin V2 Antagonist. Japanese Journal of Clinical Pharmacology and Therapeutics, 2014, 45, 29-30.	0.1	0
18	Serum amyloid A upsurge precedes standard biomarkers of hepatotoxicity in ritodrine-injected mice. Toxicology, 2013, 305, 79-88.	4.2	10

Такаакі А Козніміzu

#	Article	IF	CITATIONS
19	α-Lipoic acid protects against arsenic trioxide-induced acute QT prolongation in anesthetized guinea pigs. European Journal of Pharmacology, 2013, 705, 1-10.	3.5	12
20	Voluntary locomotion linked with cerebral activation is mediated by vasopressin V1a receptors in freeâ€moving mice. Journal of Physiology, 2013, 591, 3651-3665.	2.9	10
21	Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2013, 57, 72-81.	1.9	62
22	Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiological Reviews, 2012, 92, 1813-1864.	28.8	308
23	Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature, 2012, 483, 350-354.	27.8	572
24	Chronic ritodrine treatment induces refractoriness of glucose-lowering β2 adrenoceptor signal in female mice. Regulatory Toxicology and Pharmacology, 2012, 62, 561-567.	2.7	6
25	The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clinical and Experimental Nephrology, 2012, 16, 30-34.	1.6	20
26	Protective Effect of α-Lipoic Acid Against Arsenic Trioxide–Induced Acute Cardiac Toxicity in Rats. Journal of Pharmacological Sciences, 2011, 115, 244-248.	2.5	14
27	Proximal tubules and podocytes are toxicity targets of bucillamine in a mouse model of drug-induced kidney injury. European Journal of Pharmacology, 2011, 670, 208-215.	3.5	8
28	Oxytocin stimulates expression of a noncoding RNA tumor marker in a human neuroblastoma cell line. Life Sciences, 2010, 86, 455-460.	4.3	49
29	Signaling by purinergic receptors and channels in the pituitary gland. Molecular and Cellular Endocrinology, 2010, 314, 184-191.	3.2	20
30	Inhibition of heat shock protein 90 attenuates adenylate cyclase sensitization after chronic morphine treatment. Biochemical and Biophysical Research Communications, 2010, 392, 603-607.	2.1	24
31	The Inhibitory Effect of Cranberry Juice on Phenytoin Metabolism by Human Liver Microsomes. Japanese Journal of Clinical Pharmacology and Therapeutics, 2009, 40, 59-64.	0.1	3
32	Flow Cytometry-Based Binding Assay for GPR40 (FFAR1; Free Fatty Acid Receptor 1). Molecular Pharmacology, 2009, 75, 85-91.	2.3	46
33	Vasopressin regulation of blood pressure and volume: findings from V1a receptor–deficient mice. Kidney International, 2009, 76, 1035-1039.	5.2	65
34	Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 247-255.	3.0	123
35	Prostate growth inhibition by subtypeâ€selective alpha ₁ â€adrenoceptor antagonist naftopidil in benign prostatic hyperplasia. Prostate, 2009, 69, 1521-1528.	2.3	33
36	Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects. British Journal of Clinical Pharmacology, 2009, 68, 194-200.	2.4	28

#	Article	IF	CITATIONS
37	New Topics in Vasopressin Receptors and Approach to Novel Drugs: Vasopressin and Pain Perception. Journal of Pharmacological Sciences, 2009, 109, 33-37.	2.5	42
38	Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 523-527.	3.0	230
39	Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic Î ² cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 515-522.	3.0	104
40	Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid) Tj ETQq0 0 0 0	rgBT /Over 2.1	lock 10 Tf 50

41	Clinical implications from studies of $\hat{I}\pm 1$ adrenergic receptor knockout mice. Biochemical Pharmacology, 2007, 73, 1107-1112.	4.4	14
42	Glucocorticoid-induced granzyme A expression can be used as a marker of glucocorticoid sensitivity for acute lymphoblastic leukemia therapy. Journal of Human Genetics, 2007, 52, 328-333.	2.3	9
43	Free fatty acids administered into the colon promote the secretion of glucagon-like peptide-1 and insulin. Biochemical and Biophysical Research Communications, 2006, 340, 332-337.	2.1	38
44	Functional Role of Spliced Cytoplasmic Tails in P2X2-Receptor-Mediated Cellular Signaling. Journal of Pharmacological Sciences, 2006, 101, 261-266.	2.5	17
45	Carboxyl-Terminal Splicing Enhances Physical Interactions between the Cytoplasmic Tails of Purinergic P2X Receptors. Molecular Pharmacology, 2006, 69, 1588-1598.	2.3	36
46	V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7807-7812.	7.1	149
47	Molecular Dissection of Purinergic P2X Receptor Channels. Annals of the New York Academy of Sciences, 2005, 1048, 116-130.	3.8	32
48	Correlation between vasoconstrictor roles and mRNA expression of <i>α</i> ₁ â€adrenoceptor subtypes in blood vessels of genetically engineered mice. British Journal of Pharmacology, 2005, 146, 456-466.	5.4	31
49	Two α1-Adrenergic Receptor Subtypes Regulating the Vasopressor Response Have Differential Roles in Blood Pressure Regulation. Molecular Pharmacology, 2005, 67, 912-922.	2.3	44
50	Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7736-7741.	7.1	82
51	Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human ?1D- and ?1B-adrenergic receptors. Cardiovascular Research, 2004, 63, 662-672.	3.8	27
52	Identification of Ectodomain Regions Contributing to Gating, Deactivation, and Resensitization of Purinergic P2X Receptors. Journal of Neuroscience, 2004, 24, 6968-6978.	3.6	39
53	Vasopressin Stimulates Insulin Release from Islet Cells through V1b Receptors: a Combined Pharmacological/Knockout Approach. Molecular Pharmacology, 2004, 65, 623-629.	2.3	88
54	The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. Journal of Clinical Investigation, 2004, 113, 302-309.	8.2	96

Такаакі А Козніміzu

#	Article	IF	CITATIONS
55	The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. Journal of Clinical Investigation, 2004, 113, 302-309.	8.2	186
56	Insights into α1 adrenoceptor function in health and disease from transgenic animal studies. Trends in Endocrinology and Metabolism, 2003, 14, 107-113.	7.1	48
57	α1-Adrenergic Receptor Subtypes Differentially Control the Cell Cycle of Transfected CHO Cells through a cAMP-dependent Mechanism Involving p27. Journal of Biological Chemistry, 2003, 278, 672-678.	3.4	27
58	Intracellular calcium measurements as a method in studies on activity of purinergic P2X receptor channels. American Journal of Physiology - Cell Physiology, 2003, 285, C467-C479.	4.6	50
59	Two Novel Transcripts for Human Endothelin B Receptor Produced by RNA Editing/Alternative Splicing from a Single Gene. Journal of Biological Chemistry, 2002, 277, 33205-33212.	3.4	16
60	Purinergic P2X2 Receptor Desensitization Depends on Coupling between Ectodomain and C-Terminal Domain. Molecular Pharmacology, 2002, 62, 1187-1197.	2.3	29
61	Heteromultimerization Modulates P2X Receptor Functions through Participating Extracellular and C-terminal Subdomains. Journal of Biological Chemistry, 2002, 277, 46891-46899.	3.4	28
62	Role of the α 1D - Adrenegric Receptor in the Development of Salt-Induced Hypertension. Hypertension, 2002, 40, 101-106.	2.7	55
63	Transgenic studies of $\hat{I}\pm 1$ -adrenergic receptor subtype function. Life Sciences, 2002, 71, 2207-2215.	4.3	54
64	Restored Atrial Excitability After Late Recanalization in a Patient with Atrial Standstill and Acute Myocardial Infarction. PACE - Pacing and Clinical Electrophysiology, 2002, 25, 217-219.	1.2	8
65	Signaling by extracellular nucleotides in anterior pituitary cells. Trends in Endocrinology and Metabolism, 2001, 12, 218-225.	7.1	37
66	Dependence of Soluble Guanylyl Cyclase Activity on Calcium Signaling in Pituitary Cells. Journal of Biological Chemistry, 2001, 276, 844-849.	3.4	25
67	Characterization of Calcium Signaling by Purinergic Receptor-Channels Expressed in Excitable Cells. Molecular Pharmacology, 2000, 58, 936-945.	2.3	82
68	Characterization of Purinergic Receptors and Receptor-Channels Expressed in Anterior Pituitary Cells. Endocrinology, 2000, 141, 4091-4099.	2.8	44
69	Expression of purinergic P2X2 receptor-channels and their role in calcium signaling in pituitary cells. Biochemistry and Cell Biology, 2000, 78, 393-404.	2.0	10
70	Expression of purinergic P2X ₂ receptor-channels and their role in calcium signaling in pituitary cells. Biochemistry and Cell Biology, 2000, 78, 393-404.	2.0	4
71	Characterization of Purinergic Receptors and Receptor-Channels Expressed in Anterior Pituitary Cells. Endocrinology, 2000, 141, 4091-4099.	2.8	14
72	Expression of Ca2+-Mobilizing EndothelinAReceptors and Their Role in the Control of Ca2+Influx and Growth Hormone Secretion in Pituitary Somatotrophs. Journal of Neuroscience, 1999, 19, 7721-7731.	3.6	31

Такаакі А Козніміzu

#	Article	IF	CITATIONS
73	Expression and Responsiveness of P2Y2Receptors in Human Endometrial Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4085-4091.	3.6	42
74	Characterization of a Plasma Membrane Calcium Oscillator in Rat Pituitary Somatotrophs. Journal of Biological Chemistry, 1999, 274, 35693-35702.	3.4	43
75	Contributions of the C-terminal Domain to the Control of P2X Receptor Desensitization. Journal of Biological Chemistry, 1999, 274, 37651-37657.	3.4	72
76	Expression and Responsiveness of P2Y2 Receptors in Human Endometrial Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4085-4091.	3.6	13
77	Functional Role of Alternative Splicing in Pituitary P2X2Receptor-Channel Activation and Desensitization. Molecular Endocrinology, 1998, 12, 901-913.	3.7	65
78	Identification of Amino Acid Residues Contributing to Desensitization of the P2X2 Receptor Channel. Journal of Biological Chemistry, 1998, 273, 12853-12857.	3.4	59
79	Functional Role of Alternative Splicing in Pituitary P2X2 Receptor-Channel Activation and Desensitization. Molecular Endocrinology, 1998, 12, 901-913.	3.7	31
80	Truncation of the Receptor Carboxyl Terminus Impairs Membrane Signaling but Not Ligand Binding of Human ETB Endothelin Receptor. Biochemical and Biophysical Research Communications, 1995, 217, 354-362.	2.1	23