
Edgar M Blokhuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1400157/publications.pdf Version: 2024-02-01

EDCAR M BLOKHUIS

#	Article	IF	CITATIONS
1	Tail corrections to the surface tension of a Lennard-Jones liquid-vapour interface. Molecular Physics, 1995, 85, 665-669.	0.8	167
2	Pressure tensor of a spherical interface. Journal of Chemical Physics, 1992, 97, 3576-3586.	1.2	105
3	Thermodynamic expressions for the Tolman length. Journal of Chemical Physics, 2006, 124, 074701.	1.2	102
4	Mean field curvature corrections to the surface tension. Journal of Chemical Physics, 1998, 108, 1148-1156.	1.2	101
5	Determination of curvature corrections to the surface tension of a liquid–vapor interface through molecular dynamics simulations. Journal of Chemical Physics, 2002, 116, 302.	1.2	82
6	Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. Journal of Chemical Physics, 2009, 131, 164705.	1.2	79
7	Derivation of microscopic expressions for the rigidity constants of a simple liquid—vapor interface. Physica A: Statistical Mechanics and Its Applications, 1992, 184, 42-70.	1.2	76
8	A small angle x-ray scattering study of the droplet–cylinder transition in oil-rich sodium bis(2-ethylhexyl) sulfosuccinate microemulsions. Journal of Chemical Physics, 2000, 113, 1651-1665.	1.2	74
9	Van der Waals theory of curved surfaces. Molecular Physics, 1993, 80, 705-720.	0.8	73
10	Young's law with gravity. Molecular Physics, 1995, 86, 891-899.	0.8	41
11	On the spectrum of fluctuations of a liquid surface: From the molecular scale to the macroscopic scale. Journal of Chemical Physics, 2009, 130, 014706.	1.2	38
12	Description of the Fluctuating Colloid-Polymer Interface. Physical Review Letters, 2008, 101, 086101.	2.9	36
13	Microscopic expressions for the rigidity constants of a simple liquid–vapor interface. Journal of Chemical Physics, 1991, 95, 6986-6988.	1.2	33
14	Density functional theory of a curved liquid–vapour interface: evaluation of the rigidity constants. Journal of Physics Condensed Matter, 2013, 25, 225003.	0.7	33
15	Decreased Interfacial Tension of Demixed Aqueous Polymer Solutions due to Charge. Physical Review Letters, 2015, 115, 078303.	2.9	30
16	On the determination of the structure and tension of the interface between a fluid and a curved hard wall. Journal of Chemical Physics, 2007, 126, 054702.	1.2	27
17	Line and boundary tensions at the wetting transition: Two fluid phases on a substrate. Journal of Chemical Physics, 1995, 102, 400-413.	1.2	25
18	Wetting. Current Opinion in Colloid and Interface Science, 1996, 1, 424-429.	3.4	25

Edgar M Blokhuis

#	Article	IF	CITATIONS
19	Sphere to cylinder transition in a single phase microemulsion system: A theoretical investigation. Journal of Chemical Physics, 2001, 115, 1073-1085.	1.2	24
20	Line tension between two surface phases on a substrate. Physica A: Statistical Mechanics and Its Applications, 1994, 202, 402-419.	1.2	23
21	Existence of a bending rigidity for a hard-sphere liquid near a curved hard wall: Validity of the Hadwiger theorem. Physical Review E, 2013, 87, 022401.	0.8	23
22	Optical properties of the fluid-fluid interface. Physica A: Statistical Mechanics and Its Applications, 1990, 164, 515-548.	1.2	21
23	Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples. Journal of Chemical Physics, 2018, 148, 204702.	1.2	21
24	Tension, Rigidity, and Preferential Curvature of Interfaces between Coexisting Polymer Solutions. Macromolecules, 2013, 46, 3639-3647.	2.2	20
25	Composition, concentration and charge profiles of water–water interfaces. Journal of Physics Condensed Matter, 2014, 26, 464101.	0.7	19
26	Nucleation of wetting layers. Physical Review E, 1995, 51, 4642-4654.	0.8	18
27	Consistency of capillary wave theory in three dimensions: Divergence of the interface width and agreement with density functional theory. Journal of Chemical Physics, 1989, 91, 6494-6504.	1.2	17
28	Effects of Electric Charge on the Interfacial Tension between Coexisting Aqueous Mixtures of Polyelectrolyte and Neutral Polymer. Macromolecules, 2015, 48, 7335-7345.	2.2	17
29	Fluctuation route to the bending rigidity. Molecular Physics, 1999, 96, 397-406.	0.8	16
30	Polymer Adsorption on Curved Surfaces:Â Finite Chain Length Corrections. Macromolecules, 2003, 36, 4637-4645.	2.2	16
31	Measurement of the Curvature-Dependent Surface Tension in Nucleating Colloidal Liquids. Physical Review Letters, 2018, 121, 246102.	2.9	15
32	Helfrich free energy for aggregation and adhesion. Journal of Chemical Physics, 1999, 110, 3148-3152.	1.2	14
33	Free energy formalism for polymer adsorption: Self-consistent field theory for weak adsorption. Journal of Chemical Physics, 2003, 119, 3483-3494.	1.2	14
34	Boundary tension: From wetting transition to prewetting critical point. Journal of Chemical Physics, 1995, 102, 7584-7594.	1.2	12
35	Rigidity constants from mean-field models. Journal of Chemical Physics, 2000, 112, 2980-2986.	1.2	12
36	Interfacial Tension of Phase-Separated Polydisperse Mixed Polymer Solutions. Journal of Physical Chemistry B, 2018, 122, 3354-3362.	1.2	11

Edgar M Blokhuis

#	Article	IF	CITATIONS
37	Vesicle adhesion and microemulsion droplet dimerization: Small bending rigidity regime. Journal of Chemical Physics, 1999, 111, 7062-7074.	1.2	9
38	Title is missing!. European Physical Journal E, 2002, 7, 13-22.	0.7	9
39	Fluctuation route to the bending rigidity. Molecular Physics, 1999, 96, 397-406.	0.8	9
40	Correspondence between the pressure expressions and van der Waals theory for a curved surface. Journal of Chemical Physics, 2000, 112, 6023-6030.	1.2	8
41	Interfacial properties of colloid–polymer mixtures. Journal of Colloid and Interface Science, 2007, 315, 270-277.	5.0	8
42	Wetting and drying transitions in mean-field theory: Describing the surface parameters for the theory of Nakanishi and Fisher in terms of a microscopic model. Journal of Chemical Physics, 2009, 131, 044702.	1.2	8
43	Ellipsometry of the liquid-vapor interface close to the critical point: A theoretical analysis. International Journal of Thermophysics, 1990, 11, 13-24.	1.0	7
44	Curvature energy for droplet dimerization and aggregation in microemulsions. , 1998, , 258-262.		6
45	Comment on "Effect of gravity on contact angle: A theoretical investigation―[J. Chem. Phys. 109, 3651 (1998)]. Journal of Chemical Physics, 2000, 112, 5511-5512.	1.2	6
46	Fusion Pores Live on the Edge. Journal of Physical Chemistry Letters, 2020, 11, 1204-1208.	2.1	6
47	Efficient and realistic simulation of phase coexistence. Journal of Chemical Physics, 2020, 153, 244121.	1.2	5
48	Structure and tension of the boundary line between amphiphilic layers. Physica A: Statistical Mechanics and Its Applications, 1995, 214, 169-184.	1.2	4
49	Calculation of the Rigidity Constant in a Landau Model for Microemulsions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 313-319.	0.9	4
50	Self-Consistent Field Theory for the Distal Ordering of Adsorbed Polymer:  Comparison with the Scheutjensâ^'Fleer Model. Macromolecules, 2004, 37, 1969-1979.	2.2	3
51	Boundary tension between amphiphilic layers. International Journal of Thermophysics, 1995, 16-16, 53-62.	1.0	2
52	Wetting reversal in colloid-polymer systems. Physical Review E, 2010, 81, 051602.	0.8	2
53	Curvature effects on the one-dimensional fluid interface. Physica A: Statistical Mechanics and Its Applications, 1993, 193, 201-220.	1.2	1
54	Comment on "Symmetric Liquid-liquid Interface with a Nonzero Spontaneous Curvature― Physical Review Letters, 2007, 98, 039601; discussion 039602.	2.9	1

#	Article	IF	CITATIONS
55	Triezenberg-Zwanzig expression for the surface tension of a liquid drop. Journal of Chemical Physics, 2013, 138, 194711.	1.2	1
56	Note: A new truncation correction for the configurational temperature extends its applicability to interaction potentials with a discontinuous force. Journal of Chemical Physics, 2016, 144, 056101.	1.2	1