Mandy J Mcgeachy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/13999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RNA-binding protein IMP2 drives a stromal-Th17 cell circuit in autoimmune neuroinflammation. JCI Insight, 2022, 7, .	2.3	10
2	Matrix reboot: IL-17 signals CAFs to create a second tumor T cell checkpoint. Journal of Experimental Medicine, 2022, 219, .	4.2	0
3	IL-17 in the Pathogenesis of Disease: Good Intentions Gone Awry. Annual Review of Immunology, 2021, 39, 537-556.	9.5	53
4	The metabolism-modulating activity of IL-17 signaling in health and disease. Journal of Experimental Medicine, 2021, 218, .	4.2	34
5	Targeting "Natural Born Killers―to Modulate Immune Suppression in Neurocritical Care. Neurocritical Care, 2021, 35, 608-610.	1.2	1
6	Divergent functions of IL-17-family cytokines in DSS colitis: Insights from a naturally-occurring human mutation in IL-17F. Cytokine, 2021, 148, 155715.	1.4	10
7	IL-17–dependent fibroblastic reticular cell training boosts tissue protective mucosal immunity through IL-10–producing B cells. Science Immunology, 2021, 6, eaao3669.	5.6	6
8	Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. Journal of Experimental Medicine, 2020, 217, .	4.2	30
9	B cells in rheumatoid arthritis synovial tissues encode focused antibody repertoires that include antibodies that stimulate macrophage TNF-α production. Clinical Immunology, 2020, 212, 108360.	1.4	12
10	The Alzheimer's Disease–Associated Protein BACE1 Modulates T Cell Activation and Th17 Function. Journal of Immunology, 2019, 203, 665-675.	0.4	10
11	The IL-17 Family of Cytokines in Health and Disease. Immunity, 2019, 50, 892-906.	6.6	773
12	IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nature Immunology, 2019, 20, 534-545.	7.0	63
13	IL-17 receptor–based signaling and implications for disease. Nature Immunology, 2019, 20, 1594-1602.	7.0	271
14	IL-23 and IL-1Î ² Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Reports, 2018, 22, 2642-2653.	2.9	157
15	Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research and Therapy, 2018, 20, 139.	1.6	93
16	IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. Journal of Immunology, 2018, 201, 627-634.	0.4	69
17	CCAAT/Enhancer-binding protein \hat{I}^2 promotes pathogenesis of EAE. Cytokine, 2017, 92, 24-32.	1.4	52
18	The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews Neurology, 2017, 13, 171-191.	4.9	687

MANDY J MCGEACHY

#	Article	IF	CITATIONS
19	A Hippo in the Fox(p3) house. Nature Immunology, 2017, 18, 709-711.	7.0	2
20	Oral epithelial cells orchestrate innate type 17 responses to <i>Candida albicans</i> through the virulence factor candidalysin. Science Immunology, 2017, 2, .	5.6	154
21	CD73 is expressed by inflammatory Th17 cells in experimental autoimmune encephalomyelitis but does not limit differentiation or pathogenesis. PLoS ONE, 2017, 12, e0173655.	1.1	9
22	Analysis of CXCR5+Th17 cells in relation to disease activity and TNF inhibitor therapy in Rheumatoid Arthritis. Scientific Reports, 2016, 6, 39474.	1.6	17
23	Inflammatory Th17 Cells Express Integrin α v β 3 for Pathogenic Function. Cell Reports, 2016, 16, 1339-1351.	2.9	35
24	Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity, 2016, 44, 131-142.	6.6	131
25	Integrating p38α MAPK immune signals in nonimmune cells. Science Signaling, 2015, 8, fs5.	1.6	6
26	mTORC2 Deficiency in Myeloid Dendritic Cells Enhances Their Allogeneic Th1 and Th17 Stimulatory Ability after TLR4 Ligation In Vitro and In Vivo. Journal of Immunology, 2015, 194, 4767-4776.	0.4	38
27	A Candida albicans Strain Expressing Mammalian Interleukin-17A Results in Early Control of Fungal Growth during Disseminated Infection. Infection and Immunity, 2015, 83, 3684-3692.	1.0	4
28	MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity, 2015, 43, 475-487.	6.6	125
29	Delinking CARD9 and IL-17: CARD9 Protects against <i>Candida tropicalis</i> Infection through a TNF-α–Dependent, IL-17–Independent Mechanism. Journal of Immunology, 2015, 195, 3781-3792.	0.4	38
30	Oral-resident natural Th17 cells and Î ³ δT cells control opportunistic <i>Candida albicans</i> infections. Journal of Experimental Medicine, 2014, 211, 2075-2084.	4.2	217
31	Autoimmune Memory T Helper 17 Cell Function and Expansion Are Dependent on Interleukin-23. Cell Reports, 2013, 3, 1378-1388.	2.9	72
32	Microbial-Induced Th17: Superhero or Supervillain?. Journal of Immunology, 2012, 189, 3285-3291.	0.4	70
33	Foxp3+ Regulatory T Cells Promote T Helper 17 Cell Development InÂVivo through Regulation of Interleukin-2. Immunity, 2011, 34, 409-421.	6.6	128
34	Interleukin-23 Drives Intestinal Inflammation through Direct Activity on T Cells. Immunity, 2010, 33, 279-288.	6.6	470
35	Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature, 2010, 467, 967-971.	13.7	1,253
36	The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nature Immunology, 2009, 10, 314-324.	7.0	921

#	Article	IF	CITATIONS
37	TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nature Immunology, 2007, 8, 1390-1397.	7.0	1,353
38	Natural Recovery and Protection from Autoimmune Encephalomyelitis: Contribution of CD4+CD25+ Regulatory Cells within the Central Nervous System. Journal of Immunology, 2005, 175, 3025-3032.	0.4	461
39	Cytokines in the induction and resolution of experimental autoimmune encephalomyelitis. Cytokine, 2005, 32, 81-84.	1.4	62
40	B cells regulate autoimmunity by provision of IL-10. Nature Immunology, 2002, 3, 944-950.	7.0	1,468