Prem Pratap Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1399729/publications.pdf

Version: 2024-02-01

24 papers 856 citations

759233 12 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

934 citing authors

#	Article	IF	Citations
1	Recent advancement in functional properties and toxicity assessment of plant-derived bioactive peptides using bioinformatic approaches. Critical Reviews in Food Science and Nutrition, 2023, 63, 4503-4521.	10.3	13
2	Assessing the efficacy of chitosan nanomatrix incorporated with Cymbopogon citratus (DC.) Stapf essential oil against the food-borne molds and aflatoxin B1 production in food system. Pesticide Biochemistry and Physiology, 2022, 180, 105001.	3.6	7
3	Botanicals for Sustainable Management of Stored Food Grains: Pesticidal Efficacy, Mode of Action and Ecological Risk Assessment Using Computational Approaches. Anthropocene Science, 2022, 1, 62-79.	2.9	2
4	Nanoencapsulated plant-based antifungal formulation against the Aspergillus flavus and aflatoxin B1 contamination: Unraveling the biochemical and molecular mechanism of action. International Journal of Food Microbiology, 2022, 372, 109681.	4.7	7
5	Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. Food and Bioprocess Technology, 2021, 14, 554-571.	4.7	23
6	Untangling the multi-regime molecular mechanism of verbenol-chemotype Zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Scientific Reports, 2021, 11, 6832.	3.3	15
7	Pesticidal efficacy, mode of action and safety limits profile of essential oils based nanoformulation against Callosobruchus chinensis and Aspergillus flavus. Pesticide Biochemistry and Physiology, 2021, 175, 104813.	3.6	7
8	Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants, 2021, 10, 1472.	5.1	68
9	Potential Anti-Mycobacterium tuberculosis Activity of Plant Secondary Metabolites: Insight with Molecular Docking Interactions. Antioxidants, 2021, 10, 1990.	5.1	12
10	Encapsulation of Bunium persicum essential oil using chitosan nanopolymer: Preparation, characterization, antifungal assessment, and thermal stability. International Journal of Biological Macromolecules, 2020, 142, 172-180.	7.5	26
11	Fabrication of volatile compounds loaded-chitosan biopolymer nanoparticles: Optimization, characterization and assessment against Aspergillus flavus and aflatoxin B1 contamination. International Journal of Biological Macromolecules, 2020, 165, 1507-1518.	7.5	9
12	Assessing the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils. International Journal of Food Microbiology, 2020, 330, 108766.	4.7	22
13	Elucidation of antifungal toxicity of <i>Callistemon lanceolatus</i> essential oil encapsulated in chitosan nanogel against <i>Aspergillus flavus</i> using biochemical and in-silico approaches. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37. 1520-1530.	2.3	10
14	Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydrate Polymers, 2020, 236, 116050.	10.2	37
15	Medicinal Plants Under Climate Change: Impacts on Pharmaceutical Properties of Plants. , 2019, , 181-209.		8
16	Nanoencapsulated methyl salicylate as a biorational alternative of synthetic antifungal and aflatoxin B1 suppressive agents. Environmental Science and Pollution Research, 2019, 26, 18440-18450.	5.3	12
17	Assessing the preservative efficacy of nanoencapsulated mace essential oil against food borne molds, aflatoxin B1 contamination, and free radical generation. LWT - Food Science and Technology, 2019, 108, 429-436.	5.2	22
18	Nanoencapsulated plant-based bioactive formulation against food-borne molds and aflatoxin B1 contamination: Preparation, characterization and stability evaluation in the food system. Food Chemistry, 2019, 287, 139-150.	8.2	41

#	Article	IF	CITATION
19	Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 2018, 89, 1-11.	5.5	255
20	Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems and Environment, 2018, 267, 129-140.	5. 3	104
21	Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review. Journal of Environmental Management, 2018, 224, 361-375.	7.8	34
22	Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00256.	4.4	13
23	Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. , 2017, , 195-215.		18
24	Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L Biocatalysis and Agricultural Biotechnology, 2016, 8, 1-7.	3.1	91