
Jason Cassibry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1399172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spherically Imploding Plasma Liners as a Standoff Driver for Magnetoinertial Fusion. IEEE Transactions on Plasma Science, 2012, 40, 1287-1298.	1.3	77
2	Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications. Physics of Plasmas, 2012, 19, 123514.	1.9	48
3	Case and Development Path for Fusion Propulsion. Journal of Spacecraft and Rockets, 2015, 52, 595-612.	1.9	45
4	Two-dimensional axisymmetric magnetohydrodynamic analysis of blow-by in a coaxial plasma accelerator. Physics of Plasmas, 2006, 13, 053101.	1.9	39
5	Estimates of confinement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model. Physics of Plasmas, 2009, 16, 112707.	1.9	31
6	One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners. Physics of Plasmas, 2011, 18, .	1.9	28
7	Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry. Physics of Plasmas, 2012, 19, 052702.	1.9	24
8	Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner. IEEE Transactions on Plasma Science, 2018, 46, 1951-1961.	1.3	24
9	Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets. Physics of Plasmas, 2013, 20, 032706.	1.9	22
10	Plasma-Jet-Driven Magneto-Inertial Fusion. Fusion Science and Technology, 2019, 75, 581-598.	1.1	21
11	One-dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling. Physics of Plasmas, 2012, 19, .	1.9	17
12	Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe. Acta Astronautica, 2013, 86, 47-54.	3.2	14
13	Experimental characterization of a section of a spherically imploding plasma liner formed by merging hypersonic plasma jets. Physics of Plasmas, 2020, 27, .	1.9	8
14	A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense. Journal of Fusion Energy, 2016, 35, 123-133.	1.2	7
15	Suite for Smooth Particle Hydrodynamic Code Relevant to Spherical Plasma Liner Formation and Implosion. Journal of Nuclear Engineering and Radiation Science, 2019, 5, .	0.4	7
16	A 3-D Smoothed-Particle Hydrodynamics Model of Electrode Erosion. IEEE Transactions on Plasma Science, 2017, 45, 3030-3037.	1.3	6
17	Effects of initial conditions and transport on ram pressure, Mach number, and uniformity for plasma liner formation and implosion. Physics of Plasmas, 2020, 27, .	1.9	6
18	Three Dimensional Modeling of Pulsed Fusion for Propulsion and Terrestrial Power Using Smooth Particle Fluid with Maxwell Equation Solver (SPFMaX). , 2017, , .		5

JASON CASSIBRY

#	Article	IF	CITATIONS
19	Analytic Model to Estimate Thermonuclear Neutron Yield in Z-Pinches Using the Magnetic Noh Problem. IEEE Transactions on Plasma Science, 2016, 44, 2181-2189.	1.3	4
20	2D modeling of fusion ignition conditions for a multilayer plasma liner magneto-inertial fusion target in a cylindrical configuration. Physics of Plasmas, 2020, 27, 022701.	1.9	4
21	Numerical Modeling of Compact Toroid Formation and Propagation for Magneto-inertial Fusion Research. , 2020, , .		3
22	Effects of propagation distance and half angle on the merging of hypervelocity plasma jets. Physics of Plasmas, 2019, 26, 052701.	1.9	1
23	Investigations of a novel boundary condition approach for the accurate prediction of hypersonic oblique shocks in mesh-free Lagrangian simulations. Aerospace Science and Technology, 2020, 107, 106322.	4.8	1
24	Jupiter Observing Velocity Experiment (JOVE): Introduction to Wind Rider Solar Electric Propulsion Demonstrator and Science Objectives. Publications of the Astronomical Society of the Pacific, 2022, 134, 023001.	3.1	1