Esther Potier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1398398/publications.pdf

Version: 2024-02-01

26 papers

1,138 citations

567281 15 h-index 580821 25 g-index

27 all docs

27 docs citations

times ranked

27

1896 citing authors

#	Article	IF	CITATIONS
1	Three-dimensional Printing of Biomimetic Titanium Mimicking Trabecular Bone Induces Human Mesenchymal Stem Cell Proliferation. Spine, 2022, 47, 1027-1035.	2.0	2
2	Engineering Bone with Mesenchymal Stem Cells: Challenges and Obstacles. Biomedical and Health Research, 2021, , .	0.0	O
3	Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells, 2020, 38, 22-33.	3.2	64
4	Osteogenic-differentiated mesenchymal stem cell-secreted extracellular matrix as a bone morphogenetic protein-2 delivery system for ectopic bone formation. Acta Biomaterialia, 2020, 116, 186-200.	8.3	13
5	Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomaterialia, 2020, 109, 254-266.	8.3	44
6	Osteogenic potential of adipogenic predifferentiated human bone marrowâ€derived multipotent stromal cells for bone tissueâ€engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1511-e1524.	2.7	10
7	Adult Stem Cells for Intervertebral Disc Repair. , 2018, , 103-135.		1
8	The Regenerative Potential of Notochordal Cells in a Nucleus Pulposus Explant. Global Spine Journal, 2017, 7, 14-20.	2.3	10
9	Osteogenic protein 1 does not stimulate a regenerative effect in cultured human degenerated nucleus pulposus tissue. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2127-2135.	2.7	11
10	Micro-aggregates do not influence bone marrow stromal cell chondrogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 1021-1032.	2.7	5
11	Reduced tonicity stimulates an inflammatory response in nucleus pulposus tissue that can be limited by a COXâ€2â€specific inhibitor. Journal of Orthopaedic Research, 2015, 33, 1724-1731.	2.3	20
12	Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration. Arthritis Research and Therapy, 2015, 17, 60.	3.5	31
13	Conditioned Medium Derived from Notochordal Cell-Rich Nucleus Pulposus Tissue Stimulates Matrix Production by Canine Nucleus Pulposus Cells and Bone Marrow-Derived Stromal Cells. Tissue Engineering - Part A, 2015, 21, 1077-1084.	3.1	42
14	Can Notochordal Cells Promote Bone Marrow Stromal Cell Potential for Nucleus Pulposus Enrichment? A SimplifiedIn VitroSystem. Tissue Engineering - Part A, 2014, 20, 3241-3251.	3.1	8
15	The Effect of a Cyclooxygenase 2 Inhibitor on Early Degenerated Human Nucleus Pulposus Explants. Global Spine Journal, 2014, 4, 33-39.	2.3	8
16	Using notochordal cells of developmental origin to stimulate nucleus pulposus cells and bone marrow stromal cells for intervertebral disc regeneration. European Spine Journal, 2014, 23, 679-688.	2.2	20
17	Long-term culture of bovine nucleus pulposus explants in a native environment. Spine Journal, 2013, 13, 454-463.	1.3	31
18	Assessment of Cell Viability in Three-Dimensional Scaffolds Using Cellular Auto-Fluorescence. Tissue Engineering - Part C: Methods, 2012, 18, 198-204.	2.1	52

ESTHER POTIER

#	Article	IF	CITATION
19	Culturing Bovine Nucleus Pulposus Explants by Balancing Medium Osmolarity. Tissue Engineering - Part C: Methods, 2011, 17, 1089-1096.	2.1	60
20	Influencing biophysical properties of fibrin with buffer solutions. Journal of Materials Science, 2010, 45, 2494-2503.	3.7	11
21	Directing bone marrow-derived stromal cell function with mechanics. Journal of Biomechanics, 2010, 43, 807-817.	2.1	83
22	Desferrioxamineâ€driven upregulation of angiogenic factor expression by human bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 272-278.	2.7	34
23	Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Therapy, 2008, 15, 537-544.	4.5	57
24	Accuracy of Three Techniques to Determine Cell Viability in 3D Tissues or Scaffolds. Tissue Engineering - Part C: Methods, 2008, 14, 353-358.	2.1	43
25	Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 2007, 40, 1078-1087.	2.9	266
26	Prolonged Hypoxia Concomitant with Serum Deprivation Induces Massive Human Mesenchymal Stem Cell Death. Tissue Engineering, 2007, 13, 1325-1331.	4.6	211