Kwangmeyung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1398388/publications.pdf

Version: 2024-02-01

326 papers 26,543 citations

86 h-index 147 g-index

338 all docs $\begin{array}{c} 338 \\ \text{docs citations} \end{array}$

times ranked

338

26962 citing authors

#	Article	IF	CITATIONS
1	Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews, 2012, 41, 2656-2672.	18.7	1,258
2	Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010, 62, 28-41.	6.6	725
3	Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. Journal of Controlled Release, 2009, 135, 259-267.	4.8	509
4	Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 2010, 31, 106-114.	5.7	500
5	Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, 2008, 33, 113-137.	11.8	453
6	Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. Journal of Controlled Release, 2008, 127, 208-218.	4.8	429
7	New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Advanced Functional Materials, 2009, 19, 1553-1566.	7.8	405
8	In Vivo Targeted Delivery of Nanoparticles for Theranosis. Accounts of Chemical Research, 2011, 44, 1018-1028.	7.6	398
9	Smart Nanocarrier Based on PEGylated Hyaluronic Acid for Cancer Therapy. ACS Nano, 2011, 5, 8591-8599.	7.3	360
10	Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. Journal of Controlled Release, 2010, 146, 219-227.	4.8	336
11	Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. Journal of Controlled Release, 2008, 127, 41-49.	4.8	333
12	Long-Circulating Au-TiO ₂ Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer. Nano Letters, 2016, 16, 6257-6264.	4.5	328
13	A Nearâ€Infraredâ€Fluorescenceâ€Quenched Goldâ€Nanoparticle Imaging Probe for Inâ€Vivo Drug Screening ar Protease Activity Determination. Angewandte Chemie - International Edition, 2008, 47, 2804-2807.	nd 7.2	310
14	Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. Journal of Controlled Release, 2006, 111, 228-234.	4.8	306
15	PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 2011, 32, 1880-1889.	5.7	298
16	Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials, 2014, 35, 1735-1743.	5.7	296
17	Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) andÂPluronic® for tumor-targeted delivery of docetaxel. Biomaterials, 2011, 32, 7181-7190.	5.7	283
18	Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(\hat{l}^2 -amino ester) block copolymer micelles for cancer therapy. Journal of Controlled Release, 2007, 123, 109-115.	4.8	281

#	Article	IF	CITATIONS
19	Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials, 2012, 33, 3980-3989.	5.7	268
20	Tumoral acidic pH-responsive MPEG-poly(\hat{l}^2 -amino ester) polymeric micelles for cancer targeting therapy. Journal of Controlled Release, 2010, 144, 259-266.	4.8	263
21	ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Scientific Reports, 2016, 6, 23200.	1.6	251
22	Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. Journal of Controlled Release, 2007, 122, 305-314.	4.8	240
23	Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry, 2009, 19, 4102.	6.7	240
24	Cell-Permeable and Biocompatible Polymeric Nanoparticles for Apoptosis Imaging. Journal of the American Chemical Society, 2006, 128, 3490-3491.	6.6	237
25	Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 2012, 33, 1190-1200.	5.7	237
26	Bioorthogonal Copperâ€Free Click Chemistry Inâ€Vivo for Tumorâ€Targeted Delivery of Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 11836-11840.	7.2	235
27	pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers. ACS Nano, 2015, 9, 134-145.	7.3	231
28	Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chemistry, 2010, 21, 208-213.	1.8	214
29	Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials, 2008, 29, 1920-1930.	5.7	211
30	Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. Journal of Controlled Release, 2011, 152, 21-29.	4.8	206
31	Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Advanced Drug Delivery Reviews, 2012, 64, 1447-1458.	6.6	197
32	Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. Journal of Controlled Release, 2014, 174, 98-108.	4.8	190
33	Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials, 2012, 33, 1489-1499.	5.7	181
34	Polymers for bioimaging. Progress in Polymer Science, 2007, 32, 1031-1053.	11.8	180
35	Photosensitizer-Conjugated Human Serum Albumin Nanoparticles for Effective Photodynamic Therapy. Theranostics, 2011, 1, 230-239.	4.6	174
36	In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chemical Communications, 2010, 46, 5668.	2.2	173

#	Article	IF	CITATIONS
37	Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. Journal of Controlled Release, 2010, 141, 339-346.	4.8	170
38	Physicochemical Characterizations of Self-Assembled Nanoparticles of Glycol Chitosanâ^'Deoxycholic Acid Conjugates. Biomacromolecules, 2005, 6, 1154-1158.	2.6	169
39	Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry. ACS Nano, 2014, 8, 2048-2063.	7.3	167
40	Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials, 2009, 30, 2929-2939.	5.7	163
41	The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials, 2012, 33, 3485-3493.	5.7	163
42	The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. Journal of Controlled Release, 2010, 143, 374-382.	4.8	162
43	Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials, 2011, 32, 4021-4029.	5.7	155
44	Polymeric Nanoparticle-Based Activatable Near-Infrared Nanosensor for Protease Determination In Vivo. Nano Letters, 2009, 9, 4412-4416.	4.5	149
45	Hyaluronic Acid–Gold Nanoparticle/Interferon α Complex for Targeted Treatment of Hepatitis C Virus Infection. ACS Nano, 2012, 6, 9522-9531.	7.3	149
46	Tumorâ∈Homing Polyâ€siRNA/Glycol Chitosan Selfâ€Cross‣inked Nanoparticles for Systemic siRNA Delivery in Cancer Treatment. Angewandte Chemie - International Edition, 2012, 51, 7203-7207.	7.2	149
47	Heparinâ€Coated Gold Nanoparticles for Liverâ€Specific CT Imaging. Chemistry - A European Journal, 2009, 15, 13341-13347.	1.7	146
48	Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. Journal of Controlled Release, 2010, 144, 134-143.	4.8	145
49	Activatable imaging probes with amplified fluorescent signals. Chemical Communications, 2008, , 4250.	2.2	139
50	Tumor Targeting Chitosan Nanoparticles for Dual-Modality Optical/MR Cancer Imaging. Bioconjugate Chemistry, 2010, 21, 578-582.	1.8	139
51	Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.	5.7	139
52	Preparation and Characterization of Self-Assembled Nanoparticles of Heparin-Deoxycholic Acid Conjugates. Langmuir, 2004, 20, 11726-11731.	1.6	137
53	Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(Îμ-caprolactone-co-lactide)–poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10) Tf5510 97 [*]	Td (gb ycol)â€ -
54	Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials, 2011, 32, 5252-5261.	5.7	133

#	Article	IF	CITATIONS
55	Bioreducible Block Copolymers Based on Poly(Ethylene Glycol) and Poly(γ-Benzyl) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 101 1.8	Tf 50 747 T 132
56	Nanoprobes for biomedical imaging in living systems. Nano Today, 2011, 6, 204-220.	6.2	129
57	Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials, 2017, 131, 15-26.	5.7	128
58	pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. International Journal of Pharmaceutics, 2007, 331, 11-18.	2.6	127
59	TNF-α Gene Silencing Using Polymerized siRNA/Thiolated Glycol Chitosan Nanoparticles for Rheumatoid Arthritis. Molecular Therapy, 2014, 22, 397-408.	3.7	125
60	Injectable <i>In Situ</i> à€"Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 923-933.	1.6	124
61	Chemiluminescenceâ€Generating Nanoreactor Formulation for Nearâ€Infrared Imaging of Hydrogen Peroxide and Glucose Level in vivo. Advanced Functional Materials, 2010, 20, 2644-2648.	7.8	124
62	Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific Reports, 2014, 4, 6878.	1.6	118
63	Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release, 2015, 198, 1-9.	4.8	117
64	Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials, 2018, 178, 597-607.	5.7	117
65	Tumorâ€Targeting Gold Particles for Dual Computed Tomography/Optical Cancer Imaging. Angewandte Chemie - International Edition, 2011, 50, 9348-9351.	7.2	116
66	Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials, 2015, 53, 341-348.	5.7	116
67	Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials, 2013, 34, 6454-6463.	5.7	114
68	Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. Journal of Controlled Release, 2019, 294, 376-389.	4.8	113
69	Chemical and structural modifications of RNAi therapeutics. Advanced Drug Delivery Reviews, 2016, 104, 16-28.	6.6	110
70	Biocompatible Glycol Chitosan-Coated Gold Nanoparticles for Tumor-Targeting CT Imaging. Pharmaceutical Research, 2014, 31, 1418-1425.	1.7	108
71	The tumor accumulation and therapeutic efficacy of doxorubicin carried in calcium phosphate-reinforced polymer nanoparticles. Biomaterials, 2012, 33, 5788-5797.	5.7	106
72	Hybrid Ferritin Nanoparticles as Activatable Probes for Tumor Imaging. Angewandte Chemie - International Edition, 2011, 50, 1569-1572.	7.2	105

#	Article	IF	CITATIONS
73	Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound. Journal of Controlled Release, 2017, 263, 68-78.	4.8	104
74	Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Theranostics, 2015, 5, 1098-1114.	4.6	101
75	Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9, 7906-7923.	4.6	100
76	Manipulating the Power of an Additional Phase: A Flower-like Auâ^'Fe ₃ O ₄ Optical Nanosensor for Imaging Protease Expressions <i>In vivo</i> . ACS Nano, 2011, 5, 3043-3051.	7.3	98
77	Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. Journal of Controlled Release, 2010, 145, 159-164.	4.8	97
78	Photo-crosslinked hyaluronic acid nanoparticles with improved stability for inÂvivo tumor-targeted drug delivery. Biomaterials, 2013, 34, 5273-5280.	5.7	95
79	Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: Mineralization and its effect on tumor targetability in vivo. Journal of Controlled Release, 2013, 168, 105-114.	4.8	94
80	Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. ACS Nano, 2021, 15, 12086-12098.	7.3	93
81	Matrix Metalloproteinase Sensitive Gold Nanorod for Simultaneous Bioimaging and Photothermal Therapy of Cancer. Bioconjugate Chemistry, 2010, 21, 2173-2177.	1.8	92
82	Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. Journal of Controlled Release, 2011, 155, 60-66.	4.8	91
83	Bioreducible Carboxymethyl Dextran Nanoparticles for Tumorâ€Targeted Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1829-1838.	3.9	91
84	Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. Journal of Controlled Release, 2012, 163, 2-9.	4.8	89
85	Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. Journal of Controlled Release, 2013, 172, 358-366.	4.8	89
86	Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. International Journal of Pharmaceutics, 2010, 394, 154-161.	2.6	88
87	Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery. Journal of Controlled Release, 2013, 172, 823-831.	4.8	88
88	Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. Journal of Controlled Release, 2015, 216, 140-148.	4.8	88
89	Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. Journal of Controlled Release, 2009, 140, 210-217.	4.8	87
90	Glycol Chitosan/Heparin Immobilized Iron Oxide Nanoparticles with a Tumor-Targeting Characteristic for Magnetic Resonance Imaging. Biomacromolecules, 2011, 12, 2335-2343.	2.6	84

#	Article	IF	CITATIONS
91	Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials, 2021, 272, 120791.	5.7	83
92	Preparation of a Dipalmitoylphosphatidylcholine/Cholesterol Langmuirâ^'Blodgett Monolayer That Suppresses Protein Adsorption. Langmuir, 2001, 17, 5066-5070.	1.6	82
93	Cathepsin Bâ€Specific Metabolic Precursor for In Vivo Tumorâ€Specific Fluorescence Imaging. Angewandt Chemie - International Edition, 2016, 55, 14698-14703.	e 7.2	81
94	Heparin/Poly(I-lysine) Nanoparticle-Coated Polymeric Microspheres for Stem-Cell Therapy. Journal of the American Chemical Society, 2007, 129, 5788-5789.	6.6	80
95	Synthesis and Biological Properties of Insulinâ^'Deoxycholic Acid Chemical Conjugates. Bioconjugate Chemistry, 2005, 16, 615-620.	1.8	79
96	Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials, 2018, 150, 125-136.	5.7	79
97	Tumor‶argeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials, 2020, 32, e2002197.	11.1	78
98	Dark Quenched Matrix Metalloproteinase Fluorogenic Probe for Imaging Osteoarthritis Development <i>in Vivo</i> . Bioconjugate Chemistry, 2008, 19, 1743-1747.	1.8	77
99	Inorganic Nanoparticles for Image-Guided Therapy. Bioconjugate Chemistry, 2017, 28, 124-134.	1.8	77
100	Real-Time Video Imaging of Protease Expression In Vivo. Theranostics, 2011, 1, 18-27.	4.6	76
101	Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. Journal of Controlled Release, 2015, 220, 631-641.	4.8	76
102	Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. Journal of Controlled Release, 2016, 223, 197-206.	4.8	76
103	Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydrate Polymers, 2014, 101, 1225-1233.	5.1	75
104	Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials, 2017, 132, 28-36.	5.7	75
105	Inhibition of Notch signalling ameliorates experimental inflammatory arthritis. Annals of the Rheumatic Diseases, 2015, 74, 267-274.	0.5	73
106	Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials, 2019, 213, 119207.	5.7	73
107	In-vivo tumor targeting of pluronic-based nano-carriers. Journal of Controlled Release, 2010, 147, 109-117.	4.8	72
108	Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. Journal of Controlled Release, 2010, 148, 344-350.	4.8	70

#	Article	IF	Citations
109	Optical Imaging of Cancer-Related Proteases Using Near-Infrared Fluorescence Matrix Metalloproteinase-Sensitive and Cathepsin B-Sensitive Probes. Theranostics, 2012, 2, 179-189.	4.6	69
110	Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics. Theranostics, 2015, 5, 1402-1418.	4.6	68
111	Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. Journal of Controlled Release, 2012, 162, 111-118.	4.8	67
112	Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery. Advanced Drug Delivery Reviews, 2022, 183, 114177.	6.6	67
113	Improved Antitumor Activity and Tumor Targeting of NH2-Terminal–Specific PEGylated Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand. Molecular Cancer Therapeutics, 2010, 9, 1719-1729.	1.9	65
114	Tumorâ€Targeting Multifunctional Nanoparticles for siRNA Delivery: Recent Advances in Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1182-1193.	3.9	65
115	Facile Method To Radiolabel Glycol Chitosan Nanoparticles with ⁶⁴ Cu via Copper-Free Click Chemistry for MicroPET Imaging. Molecular Pharmaceutics, 2013, 10, 2190-2198.	2.3	64
116	Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials, 2016, 108, 57-70.	5.7	64
117	Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials, 2017, 147, 145-154.	5.7	64
118	Caspase Sensitive Gold Nanoparticle for Apoptosis Imaging in Live Cells. Bioconjugate Chemistry, 2010, 21, 1939-1942.	1.8	62
119	InÂvivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials, 2017, 139, 12-29.	5.7	62
120	Development of MRI/NIRF â€~activatable' multimodal imaging probe based on iron oxide nanoparticles. Journal of Controlled Release, 2011, 155, 152-158.	4.8	60
121	Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broadâ€ s pectrum Nanoquencher. Angewandte Chemie - International Edition, 2012, 51, 1625-1630.	7.2	60
122	Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials, 2013, 34, 9475-9485.	5.7	60
123	Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release, 2013, 172, 653-661.	4.8	60
124	Nano-enabled delivery systems across the blood–brain barrier. Archives of Pharmacal Research, 2014, 37, 24-30.	2.7	60
125	Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy. Scientific Reports, 2016, 6, 35182.	1.6	60
126	Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. Journal of Controlled Release, 2017, 267, 223-231.	4.8	60

#	Article	IF	CITATIONS
127	Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials, 2020, 261, 120347.	5 . 7	60
128	Tumor-Targeting Transferrin Nanoparticles for Systemic Polymerized siRNA Delivery in Tumor-Bearing Mice. Bioconjugate Chemistry, 2013, 24, 1850-1860.	1.8	59
129	Tumor-Homing Glycol Chitosan-Based Optical/PET Dual Imaging Nanoprobe for Cancer Diagnosis. Bioconjugate Chemistry, 2014, 25, 601-610.	1.8	59
130	Proteinticle/Gold Core/Shell Nanoparticles for Targeted Cancer Therapy without Nanotoxicity. Advanced Materials, 2014, 26, 6436-6441.	11.1	59
131	Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology, 2016, 64, 209-223.	3.6	59
132	Structural modification of siRNA for efficient gene silencing. Biotechnology Advances, 2013, 31, 491-503.	6.0	58
133	Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. Journal of Controlled Release, 2018, 269, 337-346.	4.8	58
134	Copperâ€Free Click Chemistry: Applications in Drug Delivery, Cell Tracking, and Tissue Engineering. Advanced Materials, 2022, 34, e2107192.	11.1	58
135	Cell Labeling and Tracking Method without Distorted Signals by Phagocytosis of Macrophages. Theranostics, 2014, 4, 420-431.	4.6	57
136	<i>In situ</i> cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polymer Chemistry, 2018, 9, 20-27.	1.9	57
137	Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials, 2010, 31, 9057-9064.	5.7	55
138	Engineered Proteinticles for Targeted Delivery of siRNA to Cancer Cells. Advanced Functional Materials, 2015, 25, 1279-1286.	7.8	55
139	Induced Phenotype Targeted Therapy: Radiation-Induced Apoptosis-Targeted Chemotherapy. Journal of the National Cancer Institute, 2015, 107, .	3.0	55
140	In Situ One-Step Fluorescence Labeling Strategy of Exosomes via Bioorthogonal Click Chemistry for Real-Time Exosome Tracking In Vitro and In Vivo. Bioconjugate Chemistry, 2020, 31, 1562-1574.	1.8	55
141	Protein-Phosphorylation-Responsive Polymeric Nanoparticles for Imaging Protein Kinase Activities in Single Living Cells. Angewandte Chemie - International Edition, 2007, 46, 5779-5782.	7.2	54
142	Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. Journal of Controlled Release, 2017, 266, 129-139.	4.8	54
143	pHâ€6ensitive Nanoflash for Tumoral Acidic pH Imaging in Live Animals. Small, 2010, 6, 2539-2544.	5.2	53
144	Protease Imaging of Human Atheromata Captures Molecular Information of Atherosclerosis, Complementing Anatomic Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 449-456.	1.1	53

#	Article	IF	Citations
145	Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria. Journal of Materials Chemistry B, 2014, 2, 981.	2.9	53
146	Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale, 2014, 6, 13383-13390.	2.8	53
147	Bioorthogonal Copper Free Click Chemistry for Labeling and Tracking of Chondrocytes <i>In Vivo</i> Bioconjugate Chemistry, 2016, 27, 927-936.	1.8	53
148	Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke. ACS Nano, 2019, 13, 10991-11007.	7.3	53
149	Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death. Theranostics, 2022, 12, 1999-2014.	4.6	53
150	Real Time, High Resolution Video Imaging of Apoptosis in Single Cells with a Polymeric Nanoprobe. Bioconjugate Chemistry, 2011, 22, 125-131.	1.8	51
151	The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy. Journal of Controlled Release, 2013, 165, 9-15.	4.8	51
152	Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry inÂvivo. Biomaterials, 2017, 148, 1-15.	5.7	51
153	Superparamagnetic Gold Nanoparticles Synthesized on Protein Particle Scaffolds for Cancer Theragnosis. Advanced Materials, 2017, 29, 1701146.	11.1	51
154	Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis and Rheumatism, 2011, 63, 3824-3832.	6.7	50
155	Oligomeric bile acid-mediated oral delivery of low molecular weight heparin. Journal of Controlled Release, 2014, 175, 17-24.	4.8	50
156	Anionic amino acid-derived cationic lipid for siRNA delivery. Journal of Controlled Release, 2009, 140, 268-276.	4.8	49
157	<i>In Vivo</i> Optical Imaging of Membrane-Type Matrix Metalloproteinase (MT-MMP) Activity. Molecular Pharmaceutics, 2011, 8, 2331-2338.	2.3	49
158	In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles. Journal of Controlled Release, 2012, 163, 249-255.	4.8	49
159	Non-invasive optical imaging of cathepsin B with activatable fluorogenic nanoprobes in various metastatic models. Biomaterials, 2014, 35, 2302-2311.	5.7	49
160	Polysaccharide-based Nanoparticles for Gene Delivery. Topics in Current Chemistry, 2017, 375, 31.	3.0	49
161	Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. Journal of Controlled Release, 2017, 263, 29-38.	4.8	49
162	Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery. Journal of Controlled Release, 2017, 266, 75-86.	4.8	49

#	Article	IF	CITATIONS
163	Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. Journal of Materials Chemistry B, 2017, 5, 9429-9451.	2.9	49
164	Systemic Delivery of siRNA by Chimeric Capsid Protein: Tumor Targeting and RNAi Activity <i>in Vivo </i> . Molecular Pharmaceutics, 2013, 10, 18-25.	2.3	48
165	Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs. International Journal of Pharmaceutics, 2017, 520, 111-118.	2.6	48
166	Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials, 2019, 224, 119494.	5.7	48
167	Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin. Colloid and Polymer Science, 2006, 284, 763-770.	1.0	47
168	Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine, 2014, 9, 1697-1713.	1.7	47
169	Dexamethasone-loaded Polymeric Nanoconstructs for Monitoring and Treating Inflammatory Bowel Disease. Theranostics, 2017, 7, 3653-3666.	4.6	47
170	Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging. International Journal of Nanomedicine, 2016, Volume 11, 4141-4155.	3.3	46
171	In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. Journal of Controlled Release, 2008, 128, 89-97.	4.8	45
172	Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 1219-1227.	2.9	44
173	Caspase-3/-7-Specific Metabolic Precursor for Bioorthogonal Tracking of Tumor Apoptosis. Scientific Reports, 2017, 7, 16635.	1.6	44
174	Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor. Molecular Pharmaceutics, 2017, 14, 1558-1570.	2.3	42
175	Application of Near-Infrared Fluorescence Imaging Using a Polymeric Nanoparticle-Based Probe for the Diagnosis and Therapeutic Monitoring of Colon Cancer. Digestive Diseases and Sciences, 2011, 56, 3005-3013.	1.1	41
176	Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. Journal of Controlled Release, 2012, 157, 493-499.	4.8	41
177	Combination of cancer-specific prodrug nanoparticle with Bcl-2 inhibitor to overcome acquired drug resistance. Journal of Controlled Release, 2021, 330, 920-932.	4.8	41
178	Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloids and Surfaces B: Biointerfaces, 2008, 63, 55-63.	2.5	40
179	Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: Importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug. Journal of Controlled Release, 2010, 147, 253-260.	4.8	40
180	In situ application of hydrogel-type fibrin–islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation. Journal of Controlled Release, 2012, 162, 382-390.	4.8	40

#	Article	IF	CITATIONS
181	The attenuation of experimental lung metastasis by a bile acid acylated-heparin derivative. Biomaterials, 2007, 28, 2667-2676.	5.7	39
182	Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles. Annals of Neurology, 2013, 73, 617-625.	2.8	39
183	Liverâ€Specific and Echogenic Hyaluronic Acid Nanoparticles Facilitating Liver Cancer Discrimination. Advanced Functional Materials, 2013, 23, 5518-5529.	7.8	39
184	Engineered Zn(II)-Dipicolylamine-Gold Nanorod Provides Effective Prostate Cancer Treatment by Combining siRNA Delivery and Photothermal Therapy. Theranostics, 2017, 7, 4240-4254.	4.6	39
185	Recent Trends in <i>In Situ</i> Enzyme-Activatable Prodrugs for Targeted Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 1012-1024.	1.8	39
186	Nanoparticle-Based Combination Therapy for Cancer Treatment. Current Pharmaceutical Design, 2015, 21, 3158-3166.	0.9	39
187	Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis. Journal of Materials Chemistry, 2011, 21, 17631.	6.7	38
188	Gas-generating polymeric microspheres for long-term and continuous inÂvivo ultrasound imaging. Biomaterials, 2012, 33, 936-944.	5.7	38
189	Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials, 2012, 33, 4424-4430.	5.7	38
190	Biostability and biocompatibility of a surface-grafted phospholipid monolayer on a solid substrate. Biomaterials, 2004, 25, 33-41.	5.7	37
191	Doxorubicin-Loaded PLGA Nanoparticles for Cancer Therapy: Molecular Weight Effect of PLGA in Doxorubicin Release for Controlling Immunogenic Cell Death. Pharmaceutics, 2020, 12, 1165.	2.0	37
192	Multi-core vesicle nanoparticles based on vesicle fusion for delivery of chemotherapic drugs. Biomaterials, 2011, 32, 7924-7931.	5.7	36
193	Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. Journal of Physics and Chemistry of Solids, 2008, 69, 1591-1595.	1.9	35
194	Lipid-based emulsion system as non-viral gene carriers. Archives of Pharmacal Research, 2009, 32, 639-646.	2.7	35
195	Tailoring Polymersome Bilayer Permeability Improves Enhanced Permeability and Retention Effect for Bioimaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10821-10829.	4.0	35
196	Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles. Journal of Controlled Release, 2017, 267, 203-213.	4.8	35
197	Chitosan nanoparticles show rapid extrapulmonary tissue distribution and excretion with mild pulmonary inflammation to mice. Toxicology Letters, 2010, 199, 144-152.	0.4	34
198	Cellular uptake pathway and drug release characteristics of drugâ€encapsulated glycol chitosan nanoparticles in live cells. Microscopy Research and Technique, 2010, 73, 857-865.	1.2	33

#	Article	IF	CITATIONS
199	Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy. Journal of Controlled Release, 2012, 160, 692-698.	4.8	33
200	InÂvivo fluorescence imaging for cancer diagnosis using receptor-targeted epidermal growth factor-based nanoprobe. Biomaterials, 2013, 34, 9149-9159.	5.7	33
201	Emerging Albumin-Binding Anticancer Drugs for Tumor-Targeted Drug Delivery: Current Understandings and Clinical Translation. Pharmaceutics, 2022, 14, 728.	2.0	33
202	Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Advanced Drug Delivery Reviews, 2022, 186, 114344.	6.6	33
203	Self-assembled nanoparticles of bile acid-modified glycol chitosans and their applications for cancer therapy. Macromolecular Research, 2005, 13, 167-175.	1.0	32
204	Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials, 2013, 34, 8444-8449.	5.7	32
205	DNA Amplification in Neutral Liposomes for Safe and Efficient Gene Delivery. ACS Nano, 2014, 8, 4257-4267.	7.3	32
206	Fluorescent Dye Labeled Iron Oxide/Silica Core/Shell Nanoparticle as a Multimodal Imaging Probe. Pharmaceutical Research, 2014, 31, 3371-3378.	1.7	32
207	Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptorâ€Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles. Small, 2016, 12, 4241-4253.	5.2	32
208	Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. Journal of Biomedical Optics, 2019, 24, 1.	1.4	32
209	Current Status of Nanoparticle-Based Imaging Agents for Early Diagnosis of Cancer and Atherosclerosis. Journal of Biomedical Nanotechnology, 2009, 5, 20-35.	0.5	31
210	Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics, 2017, 7, 9-22.	4.6	31
211	Evaluation of absorption of heparin-DOCA conjugates on the intestinal wall using a surface plasmon resonance. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 861-870.	1.4	30
212	Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate. Biomaterials, 2005, 26, 3435-3444.	5.7	30
213	Covalently grafted phospholipid monolayer on silicone catheter surface for reduction in platelet adhesion. Biomaterials, 2005, 26, 7115-7123.	5.7	30
214	A monitoring method for Atg4 activation in living cells using peptide-conjugated polymeric nanoparticles. Autophagy, 2011, 7, 1052-1062.	4.3	30
215	Enhancement of the Targeting Capabilities of the Paclitaxel-Loaded Pluronic Nanoparticles with a Glycol Chitosan/Heparin Composite. Molecular Pharmaceutics, 2012, 9, 230-236.	2.3	30
216	Optical Imaging and Gene Therapy with Neuroblastoma‶argeting Polymeric Nanoparticles for Potential Theranostic Applications. Small, 2016, 12, 1201-1211.	5.2	30

#	Article	IF	CITATIONS
217	Precise Targeting of Liver Tumor Using Glycol Chitosan Nanoparticles: Mechanisms, Key Factors, and Their Implications. Molecular Pharmaceutics, 2016, 13, 3700-3711.	2.3	30
218	Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33483-33491.	4.0	30
219	Bioorthogonally surfaceâ€edited extracellular vesicles based on metabolic glycoengineering for CD44â€mediated targeting of inflammatory diseases. Journal of Extracellular Vesicles, 2021, 10, e12077.	5.5	30
220	Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand. International Journal of Pharmaceutics, 2008, 363, 149-154.	2.6	29
221	Silica Coated Gold Nanorods for Imaging and Photo-Thermal Therapy of Cancer Cells. Journal of Nanoscience and Nanotechnology, 2013, 13, 3223-3229.	0.9	29
222	A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. Journal of Controlled Release, 2015, 199, 98-105.	4.8	29
223	Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry. Biochemical and Biophysical Research Communications, 2016, 479, 779-786.	1.0	29
224	Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. Journal of Controlled Release, 2019, 305, 1-17.	4.8	29
225	Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. Journal of Materials Chemistry, 2012, 22, 10444.	6.7	28
226	Ischemic brain imaging using fluorescent gold nanoprobes sensitive to reactive oxygen species. Journal of Controlled Release, 2013, 170, 352-357.	4.8	28
227	Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3983-4001.	2.9	28
228	Tetraiodothyroacetic acid-tagged liposomes for enhanced delivery of anticancer drug to tumor tissue via integrin receptor. Journal of Controlled Release, 2012, 164, 213-220.	4.8	27
229	Effect of HIFU treatment on tumor targeting efficacy of docetaxel-loaded Pluronic nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 119, 137-144.	2.5	27
230	The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis. Biomaterials, 2021, 279, 121189.	5.7	27
231	Engineered protein nanoparticles for inÂvivo tumor detection. Biomaterials, 2014, 35, 6422-6429.	5.7	26
232	Predicting the in vivo accumulation of nanoparticles in tumor based on in vitro macrophage uptake and circulation in zebrafish. Journal of Controlled Release, 2016, 244, 205-213.	4.8	26
233	lodinated Echogenic Glycol Chitosan Nanoparticles for X-ray CT/US Dual Imaging of Tumor. Nanotheranostics, 2018, 2, 117-127.	2.7	26
234	Preparation of a PEG-grafted phospholipid Langmuir-Blodgett monolayer for blood-compatible material. Journal of Biomedical Materials Research Part B, 2000, 52, 836-840.	3.0	25

#	Article	IF	CITATIONS
235	Exercise attenuates matrix metalloproteinase activity in preexisting atherosclerotic plaque. Atherosclerosis, 2011, 216, 67-73.	0.4	25
236	Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids, 2011, 41, 1113-1122.	1.2	25
237	Multifunctional nanoparticles for gene delivery and spinal cord injury. Journal of Biomedical Materials Research - Part A, 2015, 103, 3474-3482.	2.1	25
238	Development of a pH sensitive nanocarrier using calcium phosphate coated gold nanoparticles as a platform for a potential theranostic material. Macromolecular Research, 2012, 20, 319-326.	1.0	24
239	In Situ Photopolymerization of a Polymerizable Poly(ethylene glycol)-Covered Phospholipid Monolayer on a Methacryloyl-Terminated Substrate. Langmuir, 2004, 20, 5396-5402.	1.6	23
240	Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 769-776.	1.7	23
241	Near-Infrared Fluorescence Imaging Using a Protease-Specific Probe for the Detection of Colon Tumors. Gut and Liver, 2010, 4, 488-497.	1.4	23
242	Multifunctional Chitosan Nanoparticles for Tumor Imaging and Therapy. Advances in Polymer Science, 2011, , 139-161.	0.4	23
243	Biomimetic Aggrecan Reduces Cartilage Extracellular Matrix From Degradation and Lowers Catabolic Activity in Ex Vivo and In Vivo Models. Macromolecular Bioscience, 2013, 13, 1228-1237.	2.1	23
244	T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues. Nanoscale, 2016, 8, 9736-9745.	2.8	23
245	Physiological Effects of Ac4ManNAz and Optimization of Metabolic Labeling for Cell Tracking. Theranostics, 2017, 7, 1164-1176.	4.6	23
246	Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. International Journal of Energy Production and Management, 2019, 6, 163-174.	1.9	23
247	The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts. International Journal of Nanomedicine, 2017, Volume 12, 6089-6105.	3.3	22
248	Surface Plasmon Resonance Studies of the Direct Interaction Between a Drug/Intestinal Brush Border Membrane. Pharmaceutical Research, 2004, 21, 1233-1238.	1.7	21
249	"One-Step―Detection of Matrix Metalloproteinase Activity Using a Fluorogenic Peptide Probe-Immobilized Diagnostic Kit. Bioconjugate Chemistry, 2010, 21, 1378-1384.	1.8	21
250	Hyaluronidase-sensitive SPIONs for MR/optical dual imaging nanoprobes. Macromolecular Research, 2011, 19, 861-867.	1.0	21
251	In vivo NIRF Imaging of Tumor Targetability of Nanosized Liposomes in Tumorâ€Bearing Mice. Macromolecular Bioscience, 2012, 12, 849-856.	2.1	21
252	The potential and advances in RNAi therapy: Chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers. Journal of Controlled Release, 2014, 193, 113-121.	4.8	21

#	Article	IF	CITATIONS
253	A Nearâ€Infrared Fluorescenceâ€Based Optical Thermosensor. Chemistry - A European Journal, 2009, 15, 6103-6106.	1.7	20
254	Measurement of MMP Activity in Synovial Fluid in Cases of Osteoarthritis and Acute Inflammatory Conditions of the Knee Joints Using a Fluorogenic Peptide Probe-Immobilized Diagnostic Kit. Theranostics, 2012, 2, 198-206.	4.6	20
255	Detection of Active Matrix Metalloproteinase-3 in Serum and Fibroblast-Like Synoviocytes of Collagen-Induced Arthritis Mice. Bioconjugate Chemistry, 2013, 24, 1068-1074.	1.8	20
256	Anti-VEGF PolysiRNA Polyplex for the Treatment of Choroidal Neovascularization. Molecular Pharmaceutics, 2016, 13, 1988-1995.	2.3	20
257	A Comparative Study on Albumin-Binding Molecules for Targeted Tumor Delivery through Covalent and Noncovalent Approach. Bioconjugate Chemistry, 2019, 30, 3107-3118.	1.8	20
258	Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. Journal of Controlled Release, 2020, 322, 346-356.	4.8	19
259	Bovine colostrum derived-exosomes prevent dextran sulfate sodium-induced intestinal colitis <i>via</i> suppression of inflammation and oxidative stress. Biomaterials Science, 2022, 10, 2076-2087.	2.6	19
260	Direct Thrombus Imaging as a Means to Control the Variability of Mouse Embolic Infarct Models. Stroke, 2011, 42, 3566-3573.	1.0	18
261	Delivery of tumor-homing TRAIL sensitizer with long-acting TRAIL as a therapy for TRAIL-resistant tumors. Journal of Controlled Release, 2015, 220, 671-681.	4.8	18
262	Therapeutic Ultrasound Contrast Agents for the Enhancement of Tumor Diagnosis and Tumor Therapy. Journal of Biomedical Nanotechnology, 2015, 11, 1183-1192.	0.5	18
263	Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound. Nano Convergence, 2017, 4, 30.	6.3	18
264	Reducible Polyethylenimine Nanoparticles for Efficient siRNA Delivery in Corneal Neovascularization Therapy. Macromolecular Bioscience, 2016, 16, 1583-1597.	2.1	17
265	Experimental and Theoretical Structural Characterization of Cu–Au Tripods for Photothermal Anticancer Therapy. ACS Applied Nano Materials, 2019, 2, 3735-3742.	2.4	17
266	Rational Design of Inflammation-Responsive Inflatable Nanogels for Ultrasound Molecular Imaging. Chemistry of Materials, 2019, 31, 2905-2912.	3.2	17
267	Molecular Imaging and Targeted Drug Delivery Using Albumin-Based Nanoparticles. Current Pharmaceutical Design, 2015, 21, 1889-1898.	0.9	17
268	Preparation of a stable phospholipid monolayer grafted onto a methacryloyl-terminated substrate as blood compatible materials. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 887-902.	1.9	16
269	Quantitative Imaging of Cerebral Thromboemboli In Vivo. Stroke, 2017, 48, 1376-1385.	1.0	15
270	Deep Tumor Penetration of Doxorubicin-Loaded Glycol Chitosan Nanoparticles Using High-Intensity Focused Ultrasound. Pharmaceutics, 2020, 12, 974.	2.0	15

#	Article	IF	Citations
271	In vivo tracking of bioorthogonally labeled T-cells for predicting therapeutic efficacy of adoptive T-cell therapy. Journal of Controlled Release, 2021, 329, 223-236.	4.8	15
272	Theragnostic Glycol Chitosan-Conjugated Gold Nanoparticles for Photoacoustic Imaging of Regional Lymph Nodes and Delivering Tumor Antigen to Lymph Nodes. Nanomaterials, 2021, 11, 1700.	1.9	15
273	The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics, 2022, 14, 307.	2.0	15
274	Cathepsin B-Overexpressed Tumor Cell Activatable Albumin-Binding Doxorubicin Prodrug for Cancer-Targeted Therapy. Pharmaceutics, 2022, 14, 83.	2.0	15
275	Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics, 2022, 14, 474.	2.0	15
276	How Did Conventional Nanoparticle-Mediated Photothermal Therapy Become "Hot―in Combination with Cancer Immunotherapy?. Cancers, 2022, 14, 2044.	1.7	15
277	Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics, 2020, 12, 621.	2.0	14
278	Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug delivery efficiency. Nano Convergence, 2020, 7, 30.	6.3	14
279	Evaluation of the anti-tumor effects of paclitaxel-encapsulated pH-sensitive micelles. Macromolecular Research, 2009, 17, 99-103.	1.0	13
280	Cathepsinâ€Bâ€Specific Metabolic Precursor for Inâ€Vivo Tumorâ€Specific Fluorescence Imaging. Angewandt Chemie, 2016, 128, 14918-14923.	e 1.6	13
281	Non-invasive optical imaging of matrix metalloproteinase activity with albumin-based fluorogenic nanoprobes during angiogenesis in aÂmouse hindlimb ischemia model. Biomaterials, 2013, 34, 6871-6881.	5.7	12
282	Prediction of Antiarthritic Drug Efficacies by Monitoring Active Matrix Metalloproteinase-3 (MMP-3) Levels in Collagen-Induced Arthritic Mice Using the MMP-3 Probe. Molecular Pharmaceutics, 2014, 11, 1450-1458.	2.3	12
283	Mono-lithocholated exendin-4-loaded glycol chitosan nanoparticles with prolonged antidiabetic effects. International Journal of Pharmaceutics, 2015, 495, 81-86.	2.6	12
284	Epidermal growth factor (EGF)-based activatable probe for predicting therapeutic outcome of an EGF-based doxorubicin prodrug. Journal of Controlled Release, 2020, 328, 222-236.	4.8	11
285	Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials, 2021, 266, 120472.	5.7	11
286	Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging and Treatment. ACS Applied Materials & Delivery for Brain Imaging Applied Materials & Delivery for Brain I	4.0	10
287	Activatable NIRF/MRI dual imaging probe using bio-inspired coating of glycol chitosan on superparamagnetic iron oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 2019, 76, 403-409.	2.9	9
288	Gold-Nanorod-Based Scaffolds for Wound-Healing Applications. ACS Applied Nano Materials, 2022, 5, 8640-8648.	2.4	9

#	Article	IF	CITATIONS
289	Combined study of X-ray reflectivity and atomic force microscopy on a surface-grafted phospholipid monolayer on a solid. Journal of Colloid and Interface Science, 2005, 284, 107-113.	5.0	8
290	Protease Activity: Meeting Its Theranostic Potential. Theranostics, 2012, 2, 125-126.	4.6	8
291	Prevention effect of orally active heparin conjugate on cancer-associated thrombosis. Journal of Controlled Release, 2014, 195, 155-161.	4.8	8
292	MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1070-1085.	1.9	8
293	Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids and Surfaces B: Biointerfaces, 2017, 159, 644-654.	2.5	8
294	Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells. Bioconjugate Chemistry, 2021, 32, 199-214.	1.8	8
295	Cathepsin B-responsive prodrugs for cancer-targeted therapy: Recent advances and progress for clinical translation. Nano Research, 2022, 15, 7247-7266.	5.8	8
296	Blood-pool multifunctional nanoparticles formed by temperature-induced phase transition for cancer-targeting therapy and molecular imaging. International Journal of Pharmaceutics, 2012, 437, 192-202.	2.6	7
297	End-Site-Specific Conjugation of Enoxaparin and Tetradeoxycholic Acid Using Nonenzymatic Glycosylation for Oral Delivery. Journal of Medicinal Chemistry, 2016, 59, 10520-10529.	2.9	7
298	Graphene Oxide Based Fluorometric Detection of Hydrogen Peroxide in Milk. Journal of Nanoscience and Nanotechnology, 2016, 16, 1181-1185.	0.9	7
299	Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice. Circulation Journal, 2017, 81, 1528-1536.	0.7	7
300	Design of a Multicomponent Peptide-Woven Nanocomplex for Delivery of siRNA. PLoS ONE, 2015, 10, e0118310.	1.1	7
301	Docetaxel-loaded composite nanoparticles formed by a temperature-induced phase transition for cancer therapy. Journal of Bioactive and Compatible Polymers, 2012, 27, 441-452.	0.8	6
302	Amphiphilized poly(ethyleneimine) nanoparticles: a versatile multi-cargo carrier with enhanced tumor-homing efficiency and biocompatibility. Journal of Materials Chemistry B, 2015, 3, 198-206.	2.9	6
303	Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery, 2019, 16, 835-846.	2.4	6
304	Fluorogenic Probe for Detecting Active Matrix Metalloproteinase-3 (MMP-3) in Plasma and Peripheral Blood Neutrophils to Indicate the Severity of Rheumatoid Arthritis. ACS Biomaterials Science and Engineering, 2019, 5, 3039-3048.	2.6	6
305	Shortâ€Term Cessation of Dabigatran Causes a Paradoxical Prothrombotic State. Annals of Neurology, 2021, 89, 444-458.	2.8	6
306	Light-Activated Monomethyl Auristatin E Prodrug Nanoparticles for Combinational Photo-Chemotherapy of Pancreatic Cancer. Molecules, 2022, 27, 2529.	1.7	6

#	Article	lF	CITATIONS
307	Stability of poly(Acrylic Acid)-grafted phospholipid liposomes in gastrointestinal conditions. Drug Development Research, 2004, 61, 13-18.	1.4	5
308	Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system. International Journal of Nanomedicine, 2014, 9, 2955.	3 . 3	5
309	Spectroscopic Assessment of Gold Nanoparticle Biodistribution Using Surface Plasmon Resonance Phenomena. ACS Biomaterials Science and Engineering, 2019, 5, 6389-6394.	2.6	5
310	Multimodal in-vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles. , 2012 , , .		4
311	Combined Near-infrared Fluorescent Imaging and Micro-computed Tomography for Directly Visualizing Cerebral Thromboemboli. Journal of Visualized Experiments, 2016, , .	0.2	4
312	Enhanced proliferation of rabbit chondrocytes by using a well circulated nanoshock system. Scientific Reports, 2021, 11, 19388.	1.6	4
313	Thiol-Responsive Gold Nanodot Swarm with Glycol Chitosan for Photothermal Cancer Therapy. Molecules, 2021, 26, 5980.	1.7	4
314	Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy. Expert Opinion on Drug Delivery, 2022, 19, 641-652.	2.4	4
315	Drug Release from a Chemically-Anchored PEG/Phospholipid Monolayer onto Polymer-Coated Metallic Stents. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 789-802.	1.9	3
316	Cathepsin B Imaging to Predict Quality of Engineered Cartilage. Macromolecular Bioscience, 2015, 15, 1224-1232.	2.1	3
317	In vivo monitoring of angiogenesis in a mouse hindlimb ischemia model using fluorescent peptide-based probes. Amino Acids, 2016, 48, 1641-1654.	1.2	3
318	Effects of exercise training and detraining on atheromatous matrix metalloproteinase activity in mice. Atherosclerosis, 2020, 299, 15-23.	0.4	3
319	Detection of Lysyl Oxidase Activity in Tumor Extracellular Matrix Using Peptide-Functionalized Gold Nanoprobes. Cancers, 2021, 13, 4523.	1.7	3
320	Multifunctional Nanoparticles for Molecular Imaging. Journal of the Korean Medical Association, 2009, 52, 125.	0.1	1
321	New top coating system of chemically anchored phospholipid monolayer on the drug-encapsulated polymer film for drug-eluting stent. Macromolecular Research, 2010, 18, 519-525.	1.0	1
322	Design of peptide-conjugated glycol chitosan nanoparticles for near infrared fluorescent (NIRF) in vivo imaging of bladder tumors. Proceedings of SPIE, 2012, , .	0.8	1
323	Enhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1900014.	1.6	1
324	Tumor Homing Nanoparticles for Cancer Imaging and Therapy. , 2009, , .		1

#	Article	IF	CITATIONS
325	Cancer Therapy: Polymeric Nanoparticles. , 0, , 1258-1284.		O
326	Improved survival rate and minimal side effects of doxorubicin for lung metastasis using engineered discoidal polymeric particles. Biomaterials Science, 0, , .	2.6	0