Sheng-ping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1398239/publications.pdf Version: 2024-02-01

	57631	37111
9,702	44	96
citations	h-index	g-index
142	142	9543
docs citations	times ranked	citing authors
	citations 142	9,702 44 citations h-index 142 142

#	Article	IF	CITATIONS
1	Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011, 40, 3703.	18.7	2,713
2	Synthesis of Ethanol via Syngas on Cu/SiO ₂ Catalysts with Balanced Cu ⁰ –Cu ⁺ Sites. Journal of the American Chemical Society, 2012, 134, 13922-13925.	6.6	614
3	Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy and Environmental Science, 2011, 4, 3805.	15.6	318
4	Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. Journal of Materials Chemistry A, 2014, 2, 2885.	5.2	265
5	Recent advances in dialkyl carbonates synthesis and applications. Chemical Society Reviews, 2015, 44, 3079-3116.	18.7	262
6	Propane Dehydrogenation over Pt/TiO ₂ –Al ₂ O ₃ Catalysts. ACS Catalysis, 2015, 5, 438-447.	5.5	243
7	Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5, 5582.	2.8	237
8	Insight into the Balancing Effect of Active Cu Species for Hydrogenation of Carbon–Oxygen Bonds. ACS Catalysis, 2015, 5, 6200-6208.	5.5	203
9	Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO 2 : Enhanced stability with boron dopant. Journal of Catalysis, 2013, 297, 142-150.	3.1	200
10	Sorption enhanced steam reforming of ethanol on Ni–CaO–Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds. Energy and Environmental Science, 2012, 5, 8942.	15.6	168
11	Reduced Graphene Oxide (rGO)/BiVO ₄ Composites with Maximized Interfacial Coupling for Visible Lght Photocatalysis. ACS Sustainable Chemistry and Engineering, 2014, 2, 2253-2258.	3.2	159
12	The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental, 2019, 253, 348-358.	10.8	155
13	Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis Today, 2011, 160, 184-190.	2.2	150
14	Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO ₂ /cordierite monolithic catalyst: Enhanced internal mass transfer and stability. AICHE Journal, 2012, 58, 2798-2809.	1.8	125
15	Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Applied Catalysis A: General, 2007, 316, 1-21.	2.2	123
16	Effect of Cerium Oxide Doping on the Performance of CaO-Based Sorbents during Calcium Looping Cycles. Environmental Science & Technology, 2015, 49, 5021-5027.	4.6	120
17	Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Journal, 2017, 313, 759-768.	6.6	104
18	WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Applied Catalysis B: Environmental, 2019, 242, 410-421.	10.8	98

#	Article	IF	CITATIONS
19	Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure. Applied Catalysis B: Environmental, 2017, 201, 266-277.	10.8	91
20	Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous <scp><scp>Cu</scp></scp> â€ <scp>MCM</scp> â€41 catalysts. AICHE Journal, 2013, 59, 2530-2539.	1.8	85
21	Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy. Chemical Engineering Journal, 2018, 334, 237-246.	6.6	83
22	Insight into the reaction mechanism of CO 2 activation for CH 4 reforming over NiO-MgO: A combination of DRIFTS and DFT study. Applied Surface Science, 2017, 416, 59-68.	3.1	79
23	Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Applied Catalysis A: General, 2017, 539, 59-69.	2.2	73
24	Kinetics Study of Hydrogenation of Dimethyl Oxalate over Cu/SiO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 1243-1250.	1.8	72
25	Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. Catalysis Science and Technology, 2015, 5, 4378-4389.	2.1	72
26	Enhanced oxygen mobility and reactivity for ethanol steam reforming. AICHE Journal, 2012, 58, 516-525.	1.8	70
27	Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane. Journal of CO2 Utilization, 2018, 24, 190-199.	3.3	69
28	Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts. Applied Catalysis B: Environmental, 2020, 267, 118698.	10.8	68
29	Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. Chinese Journal of Catalysis, 2016, 37, 1530-1537.	6.9	64
30	Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO ₂ versus over ZrO ₂ : comparison of mechanisms. RSC Advances, 2014, 4, 30968-30975.	1.7	61
31	Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO 2 adsorption. Journal of CO2 Utilization, 2017, 19, 165-176.	3.3	60
32	Effects of extrinsic defects originating from the interfacial reaction of CeO2-x-nickel silicate on catalytic performance in methane dry reforming. Applied Catalysis B: Environmental, 2020, 277, 119278.	10.8	58
33	An Effective CuZn–SiO ₂ Bimetallic Catalyst Prepared by Hydrolysis Precipitation Method for the Hydrogenation of Methyl Acetate to Ethanol. Industrial & Engineering Chemistry Research, 2018, 57, 4526-4534.	1.8	57
34	The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2–SiO2 for transesterification of dimethyl oxalate with phenol: A comparative investigation. Applied Catalysis B: Environmental, 2007, 77, 125-134.	10.8	56
35	An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO 2. Chinese Chemical Letters, 2017, 28, 65-69.	4.8	56
36	RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid. Chinese Chemical Letters, 2019, 30, 398-402.	4.8	56

#	Article	IF	CITATIONS
37	A Pd–Fe/α-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate. Chemical Engineering Science, 2011, 66, 3513-3522.	1.9	52
38	Enhanced CO ₂ adsorption capacity and stability using CaOâ€based adsorbents treated by hydration. AICHE Journal, 2013, 59, 3586-3593.	1.8	52
39	Incorporation of Zr into Calcium Oxide for CO ₂ Capture by a Simple and Facile Sol–Gel Method. Industrial & Engineering Chemistry Research, 2016, 55, 7873-7879.	1.8	49
40	Three dimensional Ag/KCC-1 catalyst with a hierarchical fibrous framework for the hydrogenation of dimethyl oxalate. RSC Advances, 2016, 6, 12788-12791.	1.7	49
41	Fabrication of multi-shelled hollow Mg-modified CaCO 3 microspheres and their improved CO 2 adsorption performance. Chemical Engineering Journal, 2017, 321, 401-411.	6.6	47
42	Ni-containing Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate. Catalysis Today, 2016, 276, 28-35.	2.2	46
43	Hydrogenation of methyl acetate to ethanol by Cu/ZnO catalyst encapsulated in SBAâ€15. AICHE Journal, 2017, 63, 2839-2849.	1.8	46
44	Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst. Journal of Energy Chemistry, 2020, 49, 248-256.	7.1	46
45	Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis. Journal of Catalysis, 2020, 388, 154-163.	3.1	46
46	Ruthenium Complexes Immobilized on an Azolium Based Metal Organic Framework for Highly Efficient Conversion of CO ₂ into Formic Acid. ChemCatChem, 2019, 11, 1256-1263.	1.8	45
47	Effect of crystal structure of copper species on the rate and selectivity in oxidative carbonylation of ethanol for diethyl carbonate synthesis. Journal of Molecular Catalysis A, 2005, 227, 141-146.	4.8	44
48	Modification of Y Zeolite with Alkaline Treatment: Textural Properties and Catalytic Activity for Diethyl Carbonate Synthesis. Industrial & Engineering Chemistry Research, 2013, 52, 6349-6356.	1.8	44
49	Glycerol Hydrogenolysis to 1,3â€Propanediol on Tungstate/Zirconiaâ€Supported Platinum: Hydrogen Spillover Facilitated by Pt(1 1 1) Formation. ChemCatChem, 2016, 8, 3663-3671.	1.8	44
50	Hydrogenation of diesters on copper catalyst anchored on ordered hierarchical porous silica: Pore size effect. Journal of Catalysis, 2018, 357, 223-237.	3.1	44
51	Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters, 2015, 26, 1096-1100.	4.8	42
52	The Mn-promoted double-shelled CaCO3 hollow microspheres as high efficient CO2 adsorbents. Chemical Engineering Journal, 2019, 372, 53-64.	6.6	42
53	Double-Site Doping of a V Promoter on Ni <i>_x</i> -V-MgAl Catalysts for the DRM Reaction: Simultaneous Effect on CH ₄ and CO ₂ Activation. ACS Catalysis, 2021, 11, 8749-8765.	5.5	40
54	Hydrogenation of Dimethyl Oxalate Using Extruded Cu/SiO ₂ Catalysts: Mechanical Strength and Catalytic Performance. Industrial & Engineering Chemistry Research, 2012, 51, 13935-13943.	1.8	39

#	Article	IF	CITATIONS
55	Catalytic Oxidative Carbonylation over Cu ₂ O Nanoclusters Supported on Carbon Materials: The Role of the Carbon Support. ChemCatChem, 2014, 6, 2671-2679.	1.8	39
56	Cu-doped zeolites for catalytic oxidative carbonylation: The role of BrÃ,nsted acids. Applied Catalysis A: General, 2012, 417-418, 236-242.	2.2	37
57	Porous Spherical CaO-based Sorbents via PSS-Assisted Fast Precipitation for CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 18072-18077.	4.0	37
58	Synergy between Cu and BrÃ,nsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR. Journal of Catalysis, 2018, 365, 440-449.	3.1	36
59	Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catalysis, 2022, 12, 4724-4736.	5.5	35
60	Characterization and catalytic activity of TiO2/SiO2 for transesterification of dimethyl oxalate with phenol. Journal of Molecular Catalysis A, 2004, 214, 273-279.	4.8	33
61	Microwave synthesis, characterization and transesterification activities of Ti-MCM-41. Microporous and Mesoporous Materials, 2012, 156, 22-28.	2.2	33
62	The effect of metal properties on the reaction routes of glycerol hydrogenolysis over platinum and ruthenium catalysts. Catalysis Today, 2017, 298, 2-8.	2.2	33
63	CaO-based meshed hollow spheres for CO 2 capture. Chemical Engineering Science, 2015, 135, 532-539.	1.9	31
64	Effect of the addition of Ce and Zr over a flower-like NiO-MgO (111) solid solution for CO2 reforming of methane. Journal of CO2 Utilization, 2018, 26, 123-132.	3.3	31
65	Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure. Journal of Catalysis, 2021, 396, 65-80.	3.1	31
66	Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming. Microporous and Mesoporous Materials, 2020, 303, 110278.	2.2	30
67	Tuning Porosity of Ti-MCM-41: Implication for Shape Selective Catalysis. ACS Applied Materials & Interfaces, 2011, 3, 2154-2160.	4.0	29
68	A well fabricated PtSn/SiO ₂ catalyst with enhanced synergy between Pt and Sn for acetic acid hydrogenation to ethanol. RSC Advances, 2016, 6, 51005-51013.	1.7	29
69	Transesterification of dimethyl oxalate with phenol over TS-1 catalyst. Fuel Processing Technology, 2003, 83, 275-286.	3.7	28
70	Synthesis of Dimethyl Carbonate through Vaporâ€Phase Carbonylation Catalyzed by Pdâ€Doped Zeolites: Interaction of Lewis Acidic Sites and Pd Species. ChemCatChem, 2013, 5, 2174-2177.	1.8	28
71	Role of microstructure, electron transfer, and coordination state in the CO2 capture of calcium-based sorbent by doping (Zr-Mn). Chemical Engineering Journal, 2018, 336, 376-385.	6.6	28
72	Adsorption of CO ₂ on MgAl-CO ₃ LDHs-Derived Sorbents with 3D Nanoflower-like Structure. Energy & Fuels, 2018, 32, 5313-5320.	2.5	27

#	Article	IF	CITATIONS
73	Kilogram-scale production and pelletization of Al-promoted CaO-based sorbent for CO2 capture. Fuel, 2021, 301, 121049.	3.4	27
74	Insight into the Tunable CuY Catalyst for Diethyl Carbonate by Oxycarbonylation: Preparation Methods and Precursors. Industrial & Engineering Chemistry Research, 2014, 53, 5838-5845.	1.8	25
75	A new type of catalyst PdCl2/Cu-HMS for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Catalysis Communications, 2007, 8, 21-26.	1.6	24
76	Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate. Applied Surface Science, 2019, 466, 592-600.	3.1	24
77	Gas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst. Journal of Molecular Catalysis A, 2009, 306, 130-135.	4.8	23
78	Microwave preparation of Ti-containing mesoporous materials. Application as catalysts for transesterification. Chemical Engineering Journal, 2011, 166, 744-750.	6.6	23
79	Reaction mechanism of dimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations. RSC Advances, 2012, 2, 7109.	1.7	23
80	Influence of water vapor on cyclic CO2 capture performance in both carbonation and decarbonation stages for Ca-Al mixed oxide. Chemical Engineering Journal, 2019, 359, 542-551.	6.6	23
81	Enhanced performance of xNi@yMo-HSS catalysts for DRM reaction via the formation of a novel SiMoOx species. Applied Catalysis B: Environmental, 2021, 291, 120075.	10.8	23
82	Supported heteropolyacids catalysts for the selective hydrocracking and isomerization of n-C16 to produce jet fuel. Applied Catalysis A: General, 2020, 598, 117556.	2.2	23
83	Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis. Frontiers of Chemical Science and Engineering, 2012, 6, 415-422.	2.3	22
84	Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: Comparative investigation of deactivation behavior. Applied Catalysis A: General, 2019, 576, 1-10.	2.2	22
85	Investigations of Catalytic Activity, Deactivation, and Regeneration of Pb(OAc)2for Methoxycarbonylation of 2,4-Toluene Diamine with Dimethyl Carbonate. Industrial & Engineering Chemistry Research, 2007, 46, 6858-6864.	1.8	20
86	Al-Stabilized Double-Shelled Hollow CaO-Based Microspheres with Superior CO ₂ Adsorption Performance. Energy & Fuels, 2018, 32, 9692-9700.	2.5	20
87	Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate. Catalysis Today, 2020, 358, 68-73.	2.2	20
88	CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation. Fuel Processing Technology, 2018, 177, 210-218.	3.7	19
89	Deactivation Mechanism of Cu/SiO ₂ Catalysts in the Synthesis of Ethylene Glycol via Methyl Glycolate Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 12381-12388.	1.8	18
90	Improved Catalytic Performance in Dimethyl Ether Carbonylation over Hierarchical Mordenite by Enhancing Mass Transfer. Industrial & Engineering Chemistry Research, 2020, 59, 13861-13869.	1.8	18

#	Article	IF	CITATIONS
91	Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Frontiers of Chemical Science and Engineering, 2021, 15, 698-708.	2.3	18
92	LDH derived MgAl2O4 spinel supported Pd catalyst for the low-temperature methane combustion: Roles of interaction between spinel and PdO. Applied Catalysis A: General, 2021, 621, 118211.	2.2	16
93	Confined high dispersion of Ni nanoparticles derived from nickel phyllosilicate structure in silicalite-2 shell for dry reforming of methane with enhanced performance. Microporous and Mesoporous Materials, 2021, 313, 110842.	2.2	16
94	Enhanced Thermocatalytic Stability by Coupling Nickel Step Sites with Nitrogen Heteroatoms for Dry Reforming of Methane. ACS Catalysis, 2022, 12, 316-330.	5.5	16
95	Ordered mesoporous carbons supported wackerâ€ŧype catalyst for catalytic oxidative carbonylation. AICHE Journal, 2013, 59, 3797-3805.	1.8	15
96	Photocatalysis: Selective Deposition of Ag ₃ PO ₄ on Monoclinic BiVO ₄ (040) for Highly Efficient Photocatalysis (Small 23/2013). Small, 2013, 9, 3950-3950.	5.2	15
97	Enhancement of Dimethyl Carbonate Synthesis with In Situ Hydrolysis of 2,2â€Dimethoxy Propane. Chemical Engineering and Technology, 2016, 39, 723-729.	0.9	15
98	Preferential synthesis of ethanol from syngas via dimethyl oxalate hydrogenation over an integrated catalyst. Chemical Communications, 2019, 55, 5555-5558.	2.2	15
99	New ZnCe catalyst encapsulated in SBA-15 in the production of 1,3-butadiene from ethanol. Chinese Chemical Letters, 2020, 31, 535-538.	4.8	15
100	Mechanistic insight into the electron-donation effect of modified ZIF-8 on Ru for CO2 hydrogenation to formic acid. Journal of CO2 Utilization, 2022, 60, 101992.	3.3	14
101	Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure. Frontiers of Chemical Science and Engineering, 2012, 6, 259-269.	2.3	12
102	Ordered Mesoporous CuZn/HPS Catalysts for the Chemoselective Hydrogenation of Dimethyl Adipate to 1,6-Hexanediol. Chemistry Letters, 2017, 46, 1079-1082.	0.7	12
103	Fabrication of a NiFe Alloy Oxide Catalyst via Surface Reconstruction for Selective Hydrodeoxygenation of Fatty Acid to Fatty Alcohol. ACS Sustainable Chemistry and Engineering, 2021, 9, 15027-15041.	3.2	12
104	Effects of Intimacy between Acid and Metal Sites on the Isomerization of n-C16 at the Large/Minor Nanoscale and Atomic Scale. ACS Catalysis, 2022, 12, 4092-4102.	5.5	12
105	Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 10457-10464.	1.8	11
106	Hydrogenation of scCO ₂ to Formic Acid Catalyzed by Heterogeneous Ruthenium(III)/Al ₂ O ₃ Catalysts. Chemistry Letters, 2016, 45, 555-557.	0.7	11
107	MOF-derived Cu@C Catalyst for the Liquid-phase Hydrogenation of Esters. Chemistry Letters, 2018, 47, 883-886.	0.7	11
108	Enhanced synergy between CuO and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15, 666-678.	2.3	11

#	Article	IF	CITATIONS
109	Hydrodeoxygenation of aliphatic acid over NiFe intermetallic compounds: Insights into the mechanism via model compound study. Fuel, 2021, 305, 121545.	3.4	11
110	Transesterification of dimethyl oxalate with phenol over TiO ₂ /SiO ₂ : Catalyst screening and reaction optimization. AICHE Journal, 2008, 54, 3260-3272.	1.8	10
111	Silica supported potassium oxide catalyst for dehydration of 2-picolinamide to form 2-cyanopyridine. Chinese Chemical Letters, 2019, 30, 494-498.	4.8	10
112	The hydrotreatment of n 16 over Pt/HPMo/SBAâ€15 and the investigation of diffusion effect using a novel Wâ€₽ criterion. AICHE Journal, 2021, 67, e17330.	1.8	10
113	Promotional effect of indium on Cu/SiO ₂ catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol. Catalysis Science and Technology, 2021, 11, 6854-6865.	2.1	9
114	Comparative preparation of MoO3/SiO2 catalysts using conventional and slurry impregnation method and activity in transesterification of dimethy oxalate with phenol. Catalysis Letters, 2005, 99, 187-191.	1.4	8
115	Effect of Sulfate Modification on Structure Properties, Surface Acidity, and Transesterification Catalytic Performance of Titanium-Submitted Mesoporous Molecular Sieve. Industrial & Engineering Chemistry Research, 2012, 51, 5737-5742.	1.8	8
116	Effect of Mo content in MoO3/g-Al2O3on the catalytic activity for transesterification of dimethyl oxalate with phenol. Reaction Kinetics and Catalysis Letters, 2004, 83, 113-120.	0.6	7
117	Dispersion and catalytic activity of MoO ₃ on TiO ₂ ‣iO ₂ binary oxide support. AICHE Journal, 2008, 54, 741-749.	1.8	7
118	DFT and DRIFTS studies of the oxidative carbonylation of methanol over γ-Cu2Cl(OH)3: the influence of Cl. RSC Advances, 2012, 2, 8752.	1.7	7
119	Photocatalysts: Monoclinic Porous BiVO4Networks Decorated by Discrete g-C3N4Nano-Islands with Tunable Coverage for Highly Efficient Photocatalysis (Small 14/2014). Small, 2014, 10, 2782-2782.	5.2	7
120	Enhanced CuCl dispersion by regulating acidity of MCM-41 for catalytic oxycarbonylation of ethanol to diethyl carbonate. Frontiers of Chemical Science and Engineering, 2015, 9, 224-231.	2.3	7
121	Oxycarbonylation of methanol over modified CuY: Enhanced activity by improving accessibility of active sites. Chinese Chemical Letters, 2019, 30, 775-778.	4.8	7
122	Kraft Lignin Ethanolysis over Zeolites with Different Acidity and Pore Structures for Aromatics Production. Catalysts, 2021, 11, 270.	1.6	7
123	Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis. Frontiers of Chemical Science and Engineering, 2014, 8, 95-103.	2.3	6
124	Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2016, 10, 417-424.	2.3	6
125	Scaleâ€up production and process optimization of Zrâ€doped CaOâ€based sorbent for CO ₂ capture. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2502.	0.8	6
126	The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16, 397-407.	2.3	6

#	Article	IF	CITATIONS
127	Highly active Pd-Fe(α-Al2O3 catalyst with the bayberry tannin as chelating promoter for CO oxidative coupling to diethyl oxalate. Chinese Chemical Letters, 2021, 32, 796-800.	4.8	5
128	Effect of Ce doping on the catalytic performance of <i>x</i> NiCeO _{<i>y</i>} @SiO ₂ catalysts for dry reforming of methane. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2678.	0.8	5
129	Pelletization and attrition of CaOâ€based adsorbent for CO ₂ capture. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2656.	0.8	4
130	Determining Roles of Cu 0 in the Chemosynthesis of Diols via Condensed Diester Hydrogenation on Cu/SiO 2 Catalyst. ChemCatChem, 2020, 12, 3849-3852.	1.8	3
131	CeO 2 hollow nanosphere for catalytic synthesis of dimethyl carbonate from CO 2 and methanol: The effect of cavity effect on catalytic performance. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	3
132	Catalytic oxidative dehydrogenation of ethane using carbon dioxide as a soft oxidant over Coâ€HMS catalysts toÂethylene. Asia-Pacific Journal of Chemical Engineering, 0, , .	0.8	3
133	Effect of Mo loading on transesterification activities of MoO <subscript>3</subscript> /g-Al <subscript>2</subscript> O <subscript>3</subscript> catalysts prepared by conventional and slurry impregnation methods. Reaction Kinetics and Catalysis Letters, 2005. 84. 79-86.	0.6	2
134	Effect of Mo loading on transesterification activities of MoO3/γ-Al2O3 catalysts prepared by conventional and slurry impregnation methods. Reaction Kinetics and Catalysis Letters, 2005, 84, 79-86.	0.6	2
135	Adsorption of CO ₂ on Mixed Oxides Derived from Ca–Al–ClO ₄ -Layered Double Hydroxide. Energy & Fuels, 0, , .	2.5	2
136	Infrared spectra of methanol desorption in a He stream and under vacuum on CeO2 and ZrO2 catalyst surfaces. RSC Advances, 2016, 6, 19792-19793.	1.7	2
137	Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol. Chinese Journal of Chemical Engineering, 2022, 45, 162-170.	1.7	2
138	Attrition of CaO-based adsorbent in a laboratory-scale fluidized system. Powder Technology, 2021, 393, 368-379.	2.1	2
139	Cascade hydrogenation of n-C16 to produce jet fuel over tandem catalysts of modified ZSM-22. Journal of Industrial and Engineering Chemistry, 2022, 111, 88-97.	2.9	2
140	Roles of N on the N-doped Ru/AC catalyst in the hydrogenation of phthalate esters. Research on Chemical Intermediates, 0, , .	1.3	2
141	Influence of valence state of cerium ion on dimethyl carbonate synthesis from methanol and carbon dioxide over CeO 2. Asia-Pacific Journal of Chemical Engineering, 2021, 16, .	0.8	1
142	Regulating electronic environment on alkali metal-doped Cu@NS-SiO2 for selective anisole hydrodeoxygenation. Green Chemical Engineering, 2022, , .	3.3	0