Vojtech Novotny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1398196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Characterization of Syzygium (Myrtaceae) in Papua New Guinea. Case Studies in the Environment, 2022, 6, .	0.4	0
2	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	1.5	2
3	Geometrid Moth Species Richness, Distribution and Community Composition in Different Forest Types of Papua New Guinea. Case Studies in the Environment, 2022, 6, .	0.4	2
4	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
5	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	4.2	12
6	Weak effects of birds, bats, and ants on their arthropod prey on pioneering tropical forest gap vegetation. Ecology, 2022, 103, e3690.	1.5	1
7	The invasive tree Piper aduncum alters soil microbiota and nutrient content in fallow land following small scale slash-and-burn farming in tropical lowland forest in Papua New Guinea. Applied Soil Ecology, 2022, 176, 104487.	2.1	0
8	Predicting distributions of <i>Wolbachia</i> strains through host ecological contact—Who's manipulating whom?. Ecology and Evolution, 2022, 12, e8826.	0.8	1
9	Fern Species Richness and Diversity in the Forest Ecosystems of Papua New Guinea. Case Studies in the Environment, 2022, 6, .	0.4	1
10	Assemblages of fruit flies (Diptera: Tephritidae) along an elevational gradient in the rainforests of Papua New Guinea. Insect Conservation and Diversity, 2021, 14, 348-355.	1.4	5
11	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
12	Ant Species Diversity, Distribution, and Community Composition in Different Forest Types in Papua New Guinea. Case Studies in the Environment, 2021, 5, .	0.4	0
13	Elevation and leaf litter interact in determining the structure of ant communities on a tropical mountain. Biotropica, 2021, 53, 906-919.	0.8	9
14	Connecting highâ€ŧhroughput biodiversity inventories: Opportunities for a siteâ€based genomic framework for global integration and synthesis. Molecular Ecology, 2021, 30, 1120-1135.	2.0	26
15	Interâ€specific aggression generates ant mosaics in canopies of primary tropical rainforest. Oikos, 2021, 130, 1087-1099.	1.2	9
16	Soil microbial interconnections along ecological restoration gradients of lowland forests after slash-and-burn agriculture. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
17	Spatial scaling of plant and bird diversity from 50 to 10,000Âha in a lowland tropical rainforest. Oecologia, 2021, 196, 101-113.	0.9	1
18	Common spatial patterns of trees in various tropical forests: Small trees are associated with increased diversity at small spatial scales. Ecology and Evolution, 2021, 11, 8085-8095.	0.8	4

#	Article	IF	CITATIONS
19	Language and ethnobiological skills decline precipitously in Papua New Guinea, the world's most linguistically diverse nation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
20	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
21	Do Reverse Janzen-Connell Effects Reduce Species Diversity?. Trends in Ecology and Evolution, 2021, 36, 387-390.	4.2	10
22	Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests. Frontiers in Microbiology, 2021, 12, 676251.	1.5	6
23	Seasonality affects specialisation of a temperate forest herbivore community. Oikos, 2021, 130, 1450-1461.	1.2	8
24	Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. Oikos, 2021, 130, 1462-1476.	1.2	10
25	Effects of plant traits on caterpillar communities depend on host specialisation. Insect Conservation and Diversity, 2021, 14, 756-767.	1.4	3
26	Using locally available fertilisers to enhance the yields of swidden farmers in Papua New Guinea. Agricultural Systems, 2021, 192, 103089.	3.2	7
27	Bats can reach 3626Âm a.s.l. in Papua New Guinea: altitudinal range extensions for six rainforest bat species. Mammalia, 2021, .	0.3	1
28	Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 2020, 52, 277-287.	0.8	18
29	Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia, 2020, 192, 501-514.	0.9	12
30	Health service needs and perspectives of remote forest communities in Papua New Guinea: study protocol for combined clinical and rapid anthropological assessments with parallel treatment of urgent cases. BMJ Open, 2020, 10, e041784.	0.8	1
31	Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient. Ecology Letters, 2020, 23, 1499-1510.	3.0	12
32	On the Perils of Ignoring Evolution in Networks. Trends in Ecology and Evolution, 2020, 35, 865-866.	4.2	2
33	Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic. Ecology and Evolution, 2020, 10, 14137-14151.	0.8	9
34	Rationale, experience and ethical considerations underpinning integrated actions to further global goals for health and land biodiversity in Papua New Guinea. Sustainability Science, 2020, 15, 1653-1664.	2.5	6
35	Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. Journal of Ecology, 2020, 108, 1978-1988.	1.9	13
36	Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography, 2020, 43, 431-442.	2.1	20

#	Article	IF	CITATIONS
37	The Role of Evolution in Shaping Ecological Networks. Trends in Ecology and Evolution, 2020, 35, 454-466.	4.2	54
38	Insect herbivory and herbivores of <i>Ficus</i> species along a rain forest elevational gradient in Papua New Guinea. Biotropica, 2020, 52, 263-276.	0.8	34
39	Contrasting patterns of fig wasp communities along Mt. Wilhelm, Papua New Guinea. Biotropica, 2020, 52, 323-334.	0.8	4
40	Compound Specific Trends of Chemical Defences in Ficus Along an Elevational Gradient Reflect a Complex Selective Landscape. Journal of Chemical Ecology, 2020, 46, 442-454.	0.9	11
41	An inventory of plants for the land of the unexpected. Nature, 2020, 584, 531-533.	13.7	3
42	High specialization and limited structural change in plantâ€herbivore networks along a successional chronosequence in tropical montane forest. Ecography, 2019, 42, 162-172.	2.1	19
43	Secondary succession has surprisingly low impact on arboreal ant communities in tropical montane rainforest. Ecosphere, 2019, 10, e02848.	1.0	9
44	Faster speciation of figâ€wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Molecular Ecology, 2019, 28, 3958-3976.	2.0	14
45	Elevational contrast in predation and parasitism risk to caterpillars in a tropical rainforest. Entomologia Experimentalis Et Applicata, 2019, 167, 922-931.	0.7	14
46	Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 2019, 14, e0222119.	1.1	20
47	The insectâ€focused classification of fruit syndromes in tropical rain forests: An interâ€continental comparison. Biotropica, 2019, 51, 39-49.	0.8	2
48	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
49	Determinants of Piper (Piperaceae) climber composition in a lowland tropical rainforest in New Guinea. Folia Geobotanica, 2019, 54, 227-238.	0.4	0
50	Insect trypanosomatids in Papua New Guinea: high endemism and diversity. International Journal for Parasitology, 2019, 49, 1075-1086.	1.3	12
51	Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 2019, 46, 279-290.	1.4	49
52	The effect of traditional slashâ€andâ€burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation and Development, 2019, 30, 166-177.	1.8	29
53	Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and figâ€wasp mutualism. Journal of Ecology, 2018, 106, 2256-2273.	1.9	37
54	A crossâ€continental comparison of assemblages of seed―and fruitâ€feeding insects in tropical rain forests: Faunal composition and rates of attack. Journal of Biogeography, 2018, 45, 1395-1407.	1.4	12

#	Article	IF	CITATIONS
55	Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea. Biotropica, 2018, 50, 641-648.	0.8	17
56	Predation on artificial and natural nests in the lowland rainforest of Papua New Guinea. Bird Study, 2018, 65, 114-122.	0.4	5
57	Tropical forest dynamics in unstable terrain: a case study from New Guinea. Journal of Tropical Ecology, 2018, 34, 157-175.	0.5	12
58	Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in <i>Ficus</i> . Ecology Letters, 2018, 21, 83-92.	3.0	80
59	Spatial scale changes the relationship between beta diversity, species richness and latitude. Royal Society Open Science, 2018, 5, 181168.	1.1	29
60	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
61	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
62	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
63	Phylogenetic composition of host plant communities drives plantâ€herbivore food web structure. Journal of Animal Ecology, 2017, 86, 556-565.	1.3	33
64	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	6.0	353
65	Host phylogeny and nutrient content drive galler diversity and abundance on willows. Ecological Entomology, 2017, 42, 685-688.	1.1	2
66	Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends in Ecology and Evolution, 2017, 32, 438-451.	4.2	182
67	Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162564.	1.2	32
68	Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports, 2017, 7, 44018.	1.6	38
69	Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos, 2017, 126, 1101-1111.	1.2	29
70	Elevational species richness gradients in a hyperdiverse insect taxon: a global metaâ€study on geometrid moths. Global Ecology and Biogeography, 2017, 26, 412-424.	2.7	83
71	Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559.	0.9	21
72	Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803.	1.2	25

#	Article	IF	CITATIONS
73	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222
74	Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean <i>Ficus</i> . Journal of Evolutionary Biology, 2017, 30, 512-523.	0.8	19
75	Low host specificity and abundance of frugivorous lepidoptera in the lowland rain forests of Papua New Guinea. PLoS ONE, 2017, 12, e0171843.	1.1	17
76	The LifeWebs project: A call for data describing plant-herbivore interaction networks. Frontiers of Biogeography, 2016, 8, .	0.8	1
77	Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest. Journal of Vegetation Science, 2016, 27, 328-339.	1.1	45
78	Fruit sizes and the structure of frugivorous communities in a New Guinea lowland rainforest. Austral Ecology, 2016, 41, 228-237.	0.7	12
79	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75
80	Contributions of paraecologists and parataxonomists to research, conservation, and social development. Conservation Biology, 2016, 30, 506-519.	2.4	32
81	Vertical stratification of an avian community in New Guinean tropical rainforest. Population Ecology, 2016, 58, 535-547.	0.7	23
82	DNA Barcodes of Lepidoptera Reared from Yawan, Papua New Guinea. Proceedings of the Entomological Society of Washington, 2015, 117, 247.	0.0	4
83	Insect herbivores drive the loss of unique chemical defense in willows. Entomologia Experimentalis Et Applicata, 2015, 156, 88-98.	0.7	13
84	Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 2015, 38, 293-300.	2.1	73
85	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	3.3	454
86	To each its own: differential response of specialist and generalist herbivores to plant defence in willows. Journal of Animal Ecology, 2015, 84, 1123-1132.	1.3	53
87	Demography and mobility of three common understory butterfly species from tropical rain forest of Papua New Guinea. Population Ecology, 2015, 57, 445-455.	0.7	7
88	Whole-ecosystem experimental manipulations of tropical forests. Trends in Ecology and Evolution, 2015, 30, 334-346.	4.2	46
89	Gallâ€forming insects in a lowland tropical rainforest: low species diversity in an extremely specialised guild. Ecological Entomology, 2015, 40, 409-419.	1.1	11
90	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473

#	Article	IF	CITATIONS
91	Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLoS ONE, 2015, 10, e0144110.	1.1	102
92	Frugivorous weevils are too rare to cause Janzen–Connell effects in New Guinea lowland rain forest. Journal of Tropical Ecology, 2014, 30, 521-535.	0.5	16
93	A goodbye letter to alcohol: An alternative method for field preservation of arthropod specimens and DNA suitable for mass collecting methods. European Journal of Entomology, 2014, 111, 175-179.	1.2	14
94	Effect of forest fragmentation on bird species richness in Papua New Guinea. Journal of Field Ornithology, 2014, 85, 152-167.	0.3	25
95	Mesophyll cellâ€sucking herbivores (<scp>C</scp> icadellidae: <scp>T</scp> yphlocybinae) on rainforest trees in Papua <scp>N</scp> ew <scp>G</scp> uinea: local and regional diversity of a taxonomically unexplored guild. Ecological Entomology, 2014, 39, 325-333.	1.1	6
96	Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomology, 2014, 53, 259-267.	0.8	28
97	Crossâ€continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conservation and Diversity, 2013, 6, 223-233.	1.4	36
98	Dispersal of butterflies in a <scp>N</scp> ew <scp>G</scp> uinea rainforest: using mark–recapture methods in a large, homogeneous habitat. Ecological Entomology, 2013, 38, 560-569.	1.1	18
99	Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia, 2013, 171, 357-365.	0.9	51
100	Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia, 2013, 173, 521-532.	0.9	50
101	DNA Barcodes of Caterpillars (Lepidoptera) from Papua New Guinea. Proceedings of the Entomological Society of Washington, 2013, 115, 107-109.	0.0	20
102	Low host specificity in species-rich assemblages of xylem- and phloem-feeding herbivores (Auchenorrhyncha) in a New Guinea lowland rain forest. Journal of Tropical Ecology, 2013, 29, 467-476.	0.5	6
103	The Sepik River (Papua New Guinea) is not a dispersal barrier for lowland rain-forest frogs. Journal of Tropical Ecology, 2013, 29, 477-483.	0.5	6
104	Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. Journal of Tropical Ecology, 2012, 28, 331-341.	0.5	100
105	Arthropod Diversity in a Tropical Forest. Science, 2012, 338, 1481-1484.	6.0	445
106	Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 2012, 93, S211.	1.5	90
107	Plant diversity controls arthropod biomass and temporal stability. Ecology Letters, 2012, 15, 1457-1464.	3.0	153
108	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	13.7	909

#	Article	IF	CITATIONS
109	Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. American Naturalist, 2012, 179, 351-362.	1.0	47
110	Why are there more arboreal ant species in primary than in secondary tropical forests?. Journal of Animal Ecology, 2012, 81, 1103-1112.	1.3	113
111	Experimental suppression of ants foraging on rainforest vegetation in New Guinea: testing methods for a whole-forest manipulation of insect communities. Ecological Entomology, 2011, 36, 94-103.	1.1	33
112	Comparison of rainforest butterfly assemblages across three biogeographical regions using standardized protocols. The Journal of Research on the Lepidoptera, 2011, 44, 17-28.	0.1	22
113	Rain Forest Conservation in a Tribal World: Why Forest Dwellers Prefer Loggers to Conservationists. Biotropica, 2010, 42, 546-549.	0.8	31
114	Guildâ€specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 2010, 79, 1193-1203.	1.3	261
115	Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5041-5046.	3.3	100
116	Quantifying Uncertainty in Estimation of Tropical Arthropod Species Richness. American Naturalist, 2010, 176, 90-95.	1.0	199
117	Beta diversity of frogs in the forests of New Guinea, Amazonia and Europe: contrasting tropical and temperate communities. Journal of Biogeography, 2009, 36, 896-904.	1.4	13
118	Beta diversity of plant–insect food webs in tropical forests: a conceptual framework. Insect Conservation and Diversity, 2009, 2, 5-9.	1.4	59
119	Choice of metrics for studying arthropod responses to habitat disturbance: one example from Gabon. Insect Conservation and Diversity, 2008, 1, 55-66.	1.4	38
120	Changes in Arthropod Assemblages along a Wide Gradient of Disturbance in Gabon. Conservation Biology, 2008, 22, 1552-1563.	2.4	51
121	Low beta diversity of ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in lowland rainforests of Papua New Guinea. Oikos, 2008, 117, 214-222.	1.2	28
122	Faunal turnover of arthropod assemblages along a wide gradient of disturbance in Gabon. African Entomology, 2008, 16, 47-59.	0.6	5
123	Low beta diversity of herbivorous insects in tropical forests. Nature, 2007, 448, 692-695.	13.7	227
124	Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecological Entomology, 2007, 32, 762-772.	1.1	100
125	PHYLOGENETIC DISPERSION OF HOST USE IN A TROPICAL INSECT HERBIVORE COMMUNITY. Ecology, 2006, 87, S62-S75.	1.5	171
126	Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests?. Science, 2006, 313, 1115-1118.	6.0	469

VOJTECH ΝΟΛΟΙΝΧ

#	Article	IF	CITATIONS
127	Host specialization and species richness of root-feeding chrysomelid larvae (Chrysomelidae,) Tj ETQq1 1 0.78431	4 ggBT /O	verlgck 10 Tf
128	An altitudinal comparison of caterpillar (Lepidoptera) assemblages on <i>Ficus</i> trees in Papua New Guinea. Journal of Biogeography, 2005, 32, 1303-1314.	1.4	48
129	Host specificity of insect herbivores in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1083-1090.	1.2	289
130	Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. Journal of Tropical Ecology, 2005, 21, 67-77.	0.5	37
131	Insects on Plants: Diversity of Herbivore Assemblages Revisited. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 597-620.	3.8	225
132	No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters, 2004, 7, 1090-1100.	3.0	64
133	Conservation and biological monitoring of tropical forests: the role of parataxonomists. Journal of Applied Ecology, 2004, 41, 163-174.	1.9	80
134	Local Species Richness of Leaf-Chewing Insects Feeding on Woody Plants from One Hectare of a Lowland Rainforest. Conservation Biology, 2004, 18, 227-237.	2.4	44
135	Colonising aliens: caterpillars (Lepidoptera) feeding on Piper aduncum and P. umbellatum in rainforests of Papua New Guinea. Ecological Entomology, 2003, 28, 704-716.	1.1	47
136	Predictably simple: assemblages of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2337-2344.	1.2	55
137	Successful invasion of the neotropical species Piper aduncum in rain forests in Papua New Guinea. Applied Vegetation Science, 2002, 5, 255-262.	0.9	57
138	Host specialization of leaf-chewing insects in a New Guinea rainforest. Journal of Animal Ecology, 2002, 71, 400-412.	1.3	90
139	Low host specificity of herbivorous insects in a tropical forest. Nature, 2002, 416, 841-844.	13.7	588
140	Sampling error can cause false rejection of the core-satellite species hypothesis. Oecologia, 2001, 126, 360-362.	0.9	6
141	Habitat and successional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. Journal of Ecology, 2001, 89, 186-199.	1.9	70
142	Title is missing!. Journal of Insect Conservation, 2001, 5, 197-206.	0.8	28
143	Local versus regional species richness in tropical insects: one lowland site compared with the island of New Guinea. Ecological Entomology, 2000, 25, 445-451.	1.1	22
144	Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos, 2000, 89, 564-572.	1.2	393

#	Article	IF	CITATIONS
145	ENVIRONMENTAL AUDITING: Arthropod Monitoring for Fine-Scale Habitat Analysis: A Case Study of the El Segundo Sand Dunes. Environmental Management, 2000, 25, 445-452.	1.2	33
146	Quantifying Biodiversity: Experience with Parataxonomists and Digital Photography in Papua New Guinea and Guyana. BioScience, 2000, 50, 899.	2.2	67
147	The size distribution of conspecific populations: the peoples of New Guinea. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 947-952.	1.2	14
148	Predation risk for herbivorous insects on tropical vegetation: A search for enemy-free space and time. Austral Ecology, 1999, 24, 477-483.	0.7	51
149	Species richness of insect herbivore communities on Ficus in Papua New Guinea. Biological Journal of the Linnean Society, 1999, 67, 477-499.	0.7	64
150	Body size and host plant specialization: a relationship from a community of herbivorous insects on Ficus from Papua New Guinea. Journal of Tropical Ecology, 1999, 15, 315-328.	0.5	39
151	Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia, 1998, 115, 514-522.	0.9	102
152	Assessing the impact of forest disturbance on tropical invertebrates: some comments. Journal of Applied Ecology, 1998, 35, 461-466.	1.9	49
153	Why are there no small species among xylem-sucking insects?. Evolutionary Ecology, 1997, 11, 419-437.	0.5	104
154	Distribution of Body Sizes in Arthropod Taxa and Communities. Oikos, 1996, 75, 75.	1.2	20
155	Relationships between Life Histories of Leafhoppers (Auchenorrhyncha - Hemiptera) and Their Host Plants (Juncaceae, Cyperaceae, Poaceae). Oikos, 1995, 73, 33.	1.2	27
156	Adaptive significance of wing dimorphism in males of <i>Nilaparvata lugens</i> . Entomologia Experimentalis Et Applicata, 1995, 76, 233-239.	0.7	16
157	Relation between temporal persistence of host plants and wing length in leafhoppers (Hemiptera:) Tj ETQq1 1 0	.784314 rg 1.1	gBT_/Overlock
158	Association of Polyphagy in Leafhoppers (Auchenorrhyncha, Hemiptera) with Unpredictable Environments. Oikos, 1994, 70, 223.	1.2	52
159	Habitat Preferences, Distribution and Seasonality of the Butterflies (Lepidoptera, Papilionoidea) in a Montane Tropical Rain Forest, Vietnam. Journal of Biogeography, 1993, 20, 109.	1.4	117
160	Spatial and temporal components of species diversity in Auchenorrhyncha (Insecta: Hemiptera) communities of Indochinese montane rain forest. Journal of Tropical Ecology, 1993, 9, 93-100.	0.5	23
161	False Head Wing Pattern of the Burmese Junglequeen Butterfly and the Deception of Avian Predators. Biotropica, 1993, 25, 474.	0.8	36
162	Community structure of Auchenorrhyncha (Homoptera) in montane rain forest in Vietnam. Journal of Tropical Ecology, 1992, 8, 169-179.	0.5	15

#	Article	IF	CITATIONS
163	Effect of Habitat Persistence on the Relationship between Geographic Distribution and Local Abundance. Oikos, 1991, 61, 431.	1.2	30
164	Ficus trees with upregulated or downregulated defence did not impact predation on their neighbours in a tropical rainforest. Arthropod-Plant Interactions, 0, , 1.	0.5	1