Michael S Glickman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1398057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TOX is a critical regulator of tumour-specific T cell differentiation. Nature, 2019, 571, 270-274.	27.8	697
2	A Novel Mycolic Acid Cyclopropane Synthetase Is Required for Cording, Persistence, and Virulence of Mycobacterium tuberculosis. Molecular Cell, 2000, 5, 717-727.	9.7	599
3	The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nature Reviews Urology, 2014, 11, 153-162.	3.8	535
4	Determinants of COVID-19 disease severity in patients with cancer. Nature Medicine, 2020, 26, 1218-1223.	30.7	501
5	Microbial Pathogenesis of Mycobacterium tuberculosis: Dawn of a Discipline. Cell, 2001, 104, 477-485.	28.9	262
6	Bacterial DNA repair by non-homologous end joining. Nature Reviews Microbiology, 2007, 5, 852-861.	28.6	245
7	Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. Journal of Experimental Medicine, 2005, 201, 535-543.	8.5	218
8	CarD Is an Essential Regulator of rRNA Transcription Required for Mycobacterium tuberculosis Persistence. Cell, 2009, 138, 146-159.	28.9	197
9	Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nature Structural and Molecular Biology, 2005, 12, 304-312.	8.2	190
10	A Gamma Interferon Independent Mechanism of CD4 T Cell Mediated Control of M. tuberculosis Infection in vivo. PLoS Pathogens, 2011, 7, e1002052.	4.7	183
11	Division of labor among <i>Mycobacterium smegmatis</i> RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Research, 2017, 45, 1-14.	14.5	183
12	Crystal Structures of Mycolic Acid Cyclopropane Synthases from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 11559-11569.	3.4	175
13	Delayed protection by ESAT-6–specific effector CD4+ T cells after airborne <i>M. tuberculosis</i> infection. Journal of Experimental Medicine, 2008, 205, 2359-2368.	8.5	172
14	Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. Journal of Clinical Investigation, 2006, 116, 1660-1667.	8.2	171
15	Converting Cancer Therapies into Cures: Lessons from Infectious Diseases. Cell, 2012, 148, 1089-1098.	28.9	159
16	Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Scientific Reports, 2017, 7, 10767.	3.3	148
17	The Mycobacterium tuberculosis cmaA2 Gene Encodes a Mycolic Acid trans-Cyclopropane Synthetase. Journal of Biological Chemistry, 2001, 276, 2228-2233.	3.4	128
18	Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. ELife, 2013, 2, e01086.	6.0	120

MICHAEL S GLICKMAN

#	Article	IF	CITATIONS
19	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	11.1	117
20	Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature, 2005, 436, 406-409.	27.8	108
21	Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. ELife, 2017, 6, .	6.0	106
22	The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes and Development, 2008, 22, 512-527.	5.9	102
23	Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis. Chemistry and Biology, 2009, 16, 499-509.	6.0	102
24	Mycobacteria exploit three genetically distinct DNA doubleâ€strand break repair pathways. Molecular Microbiology, 2011, 79, 316-330.	2.5	96
25	Mycobacterial Nonhomologous End Joining Mediates Mutagenic Repair of Chromosomal Double-Strand DNA Breaks. Journal of Bacteriology, 2007, 189, 5237-5246.	2.2	84
26	Structure and function of CarD, an essential mycobacterial transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12619-12624.	7.1	84
27	AdnAB: a new DSB-resecting motor–nuclease from mycobacteria. Genes and Development, 2009, 23, 1423-1437.	5.9	82
28	Control of T cell antigen reactivity via programmed TCR downregulation. Nature Immunology, 2016, 17, 379-386.	14.5	79
29	The mmaA2 Gene of Mycobacterium tuberculosis Encodes the Distal Cyclopropane Synthase of the α-Mycolic Acid. Journal of Biological Chemistry, 2003, 278, 7844-7849.	3.4	77
30	Mycobacterium tuberculosis Lacking All Mycolic Acid Cyclopropanation Is Viable but Highly Attenuated and Hyperinflammatory in Mice. Infection and Immunity, 2012, 80, 1958-1968.	2.2	74
31	The Microbiome and Tuberculosis: Early Evidence for Cross Talk. MBio, 2018, 9, .	4.1	71
32	Mycobacterial UvrD1 Is a Ku-dependent DNA Helicase That Plays a Role in Multiple DNA Repair Events, Including Double-strand Break Repair. Journal of Biological Chemistry, 2007, 282, 15114-15125.	3.4	66
33	Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine, 2021, 27, 1646-1654.	30.7	65
34	Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1711-1716.	7.1	62
35	An Essential Nonredundant Role for Mycobacterial DnaK in Native Protein Folding. PLoS Genetics, 2014, 10, e1004516.	3.5	62
36	Crystal Structure and Nonhomologous End-joining Function of the Ligase Component of Mycobacterium DNA Ligase D. Journal of Biological Chemistry, 2006, 281, 13412-13423.	3.4	61

MICHAEL S GLICKMAN

#	Article	IF	CITATIONS
37	Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes and Infection, 2010, 12, 1091-1101.	1.9	60
38	Interaction of CarD with RNA Polymerase Mediates Mycobacterium tuberculosis Viability, Rifampin Resistance, and Pathogenesis. Journal of Bacteriology, 2012, 194, 5621-5631.	2.2	59
39	Mucosal-associated invariant and $\hat{I}^{\hat{J}\hat{I}'}T$ cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight, 2018, 3, .	5.0	59
40	Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-Î ³ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18627-18637.	7.1	58
41	Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nature Communications, 2018, 9, 4147.	12.8	57
42	<i>M. tuberculosis</i> intramembrane protease Rip1 controls transcription through three antiâ€sigma factor substrates. Molecular Microbiology, 2010, 77, 605-617.	2.5	56
43	Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes and Infection, 2006, 8, 1882-1888.	1.9	50
44	Redundant Function of <i>cmaA2</i> and <i>mmaA2</i> in <i>Mycobacterium tuberculosis cis</i> Cyclopropanation of Oxygenated Mycolates. Journal of Bacteriology, 2010, 192, 3661-3668.	2.2	48
45	Domain Requirements for DNA Unwinding by Mycobacterial UvrD2, an Essential DNA Helicase. Biochemistry, 2008, 47, 9355-9364.	2.5	46
46	An improved counterselectable marker system for mycobacterial recombination using galK and 2-deoxy-galactose. Gene, 2011, 470, 31-36.	2.2	46
47	Function of site-2 proteases in bacteria and bacterial pathogens. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2808-2814.	2.6	45
48	Reconstitution of a <i>Mycobacterium tuberculosis</i> proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7947-E7956.	7.1	43
49	A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Research, 2013, 41, 2284-2295.	14.5	34
50	Two Accessory Proteins Govern MmpL3 Mycolic Acid Transport in Mycobacteria. MBio, 2019, 10, .	4.1	32
51	Synthesis, stabilization, and characterization of the MR1 ligand precursor 5-amino-6-D-ribitylaminouracil (5-A-RU). PLoS ONE, 2018, 13, e0191837.	2.5	31
52	Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis. Nature Communications, 2021, 12, 1141.	12.8	28
53	Single-Cell Transcriptional Profiling Reveals Signatures of Helper, Effector, and Regulatory MAIT Cells during Homeostasis and Activation. Journal of Immunology, 2022, 208, 1042-1056.	0.8	26
54	The Rip1 Protease of Mycobacterium tuberculosis Controls the SigD Regulon. Journal of Bacteriology, 2014, 196, 2638-2645.	2.2	25

#	Article	IF	CITATIONS
55	Efficient 5-OP-RU-Induced Enrichment of Mucosa-Associated Invariant T Cells in the Murine Lung Does Not Enhance Control of Aerosol Mycobacterium tuberculosis Infection. Infection and Immunity, 2020, 89, .	2.2	25
56	Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease. Molecular Cell, 2018, 72, 152-161.e7.	9.7	23
57	Characterization of <i>Mycobacterium smegmatis</i> PolD2 and PolD1 as RNA/DNA Polymerases Homologous to the POL Domain of Bacterial DNA Ligase D. Biochemistry, 2012, 51, 10147-10158.	2.5	22
58	A multilayered repair system protects the mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19517-19527.	7.1	21
59	Efficient Allelic Exchange and Transposon Mutagenesis in Mycobacterium avium by Specialized Transduction. Applied and Environmental Microbiology, 2003, 69, 5039-5044.	3.1	19
60	DNA Ligase C1 Mediates the LigD-Independent Nonhomologous End-Joining Pathway of Mycobacterium smegmatis. Journal of Bacteriology, 2014, 196, 3366-3376.	2.2	18
61	Double-Strand DNA Break Repair in Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	18
62	Division of labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. Nucleic Acids Research, 2021, 49, 12805-12819.	14.5	18
63	Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection. Infection and Immunity, 2014, 82, 3177-3185.	2.2	17
64	Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci. ACS Chemical Biology, 2014, 9, 2572-2583.	3.4	17
65	Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Research, 2017, 45, 762-774.	14.5	17
66	RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria. Journal of Bacteriology, 2015, 197, 3121-3132.	2.2	16
67	Catalytic and Non-Catalytic Roles for the Mono-ADP-Ribosyltransferase Arr in the Mycobacterial DNA Damage Response. PLoS ONE, 2011, 6, e21807.	2.5	15
68	Integrated sensing of host stresses by inhibition of a cytoplasmic two-component system controls M. tuberculosis acute lung infection. ELife, 2021, 10, .	6.0	15
69	CarD. Transcription, 2011, 2, 15-18.	3.1	14
70	Genome-wide mapping of the distribution of CarD, RNAP If A, and RNAP I^2 on the Mycobacterium smegmatis chromosome using chromatin immunoprecipitation sequencing. Genomics Data, 2014, 2, 110-113.	1.3	14
71	The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. MBio, 2021, 12, .	4.1	14

72 Cording, Cord Factors, and Trehalose Dimycolate. , 0, , 63-73.

MICHAEL S GLICKMAN

#	Article	IF	CITATIONS
73	Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Reports, 2021, 35, 109166.	6.4	13
74	Site-2 protease substrate specificity and coupling in trans by a PDZ-substrate adapter protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19543-19548.	7.1	12
75	Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal. Molecular Microbiology, 2017, 106, 1018-1031.	2.5	10
76	Viral oncolytic immunotherapy in the war on cancer: Infection control considerations. Infection Control and Hospital Epidemiology, 2019, 40, 350-354.	1.8	10
77	Nontuberculous Mycobacterial Infections After Silicone Breast Implant Reconstruction Emphasize a Diversity of Infecting Mycobacteria. Open Forum Infectious Diseases, 2017, 4, ofx189.	0.9	8
78	Adding Insult to Injury: Exacerbating TB Risk with Smoking. Cell Host and Microbe, 2016, 19, 432-433.	11.0	6
79	Challenges for the MD Physician-Scientist Upon Entering the Lab: From the Grand to the Practical. Journal of Infectious Diseases, 2018, 218, S25-S27.	4.0	6
80	M.tuberculosis Mutants Lacking Oxygenated Mycolates Show Increased Immunogenicity and Protective Efficacy as Compared to M. bovis BCG Vaccine in an Experimental Mouse Model. PLoS ONE, 2013, 8, e76442.	2.5	5
81	Clinical and radiographic differentiation of lung nodules caused by mycobacteria and lung cancer: a case–control study. BMC Infectious Diseases, 2015, 15, 482.	2.9	5
82	Editorial overview: Attrition warfare: host cell weapons against intracellular pathogens, and how the pathogens fight back. Current Opinion in Immunology, 2019, 60, vi-ix.	5.5	1
83	Double-Strand DNA Break Repair in Mycobacteria. , 0, , 657-666.		0