
F Anthony Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1397408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Reports, 2018, 24, 1722-1729.	2.9	231
2	Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1271-1298.	2.9	171
3	Therapeutic Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-Resistant Prostate Cancer. Cancer Research, 2017, 77, 5564-5575.	0.4	105
4	Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains. Journal of Medicinal Chemistry, 2016, 59, 5391-5402.	2.9	95
5	Fragment-Based Discovery of a Selective and Cell-Active Benzodiazepinone CBP/EP300 Bromodomain Inhibitor (CPI-637). ACS Medicinal Chemistry Letters, 2016, 7, 531-536.	1.3	87
6	GNE-781, A Highly Advanced Potent and Selective Bromodomain Inhibitor of Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP). Journal of Medicinal Chemistry, 2017, 60, 9162-9183.	2.9	77
7	Structureâ~'Activity Relationships of α-Ketooxazole Inhibitors of Fatty Acid Amide Hydrolase. Journal of Medicinal Chemistry, 2007, 50, 3359-3368.	2.9	76
8	Potent and Selective α-Ketoheterocycle-Based Inhibitors of the Anandamide and Oleamide Catabolizing Enzyme, Fatty Acid Amide Hydrolase. Journal of Medicinal Chemistry, 2007, 50, 1058-1068.	2.9	75
9	Total Synthesis of Piericidin A1 and B1 and Key Analogues. Journal of the American Chemical Society, 2006, 128, 11799-11807.	6.6	70
10	Discovery of a Potent and Selective in Vivo Probe (GNE-272) for the Bromodomains of CBP/EP300. Journal of Medicinal Chemistry, 2016, 59, 10549-10563.	2.9	69
11	The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. Journal of Medicinal Chemistry, 2020, 63, 5031-5073.	2.9	67
12	Optimization of α-Ketooxazole Inhibitors of Fatty Acid Amide Hydrolase. Journal of Medicinal Chemistry, 2008, 51, 937-947.	2.9	58
13	Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. Journal of Biological Chemistry, 2016, 291, 13014-13027.	1.6	58
14	Delineation of a Fundamental α-Ketoheterocycle Substituent Effect for Use in the Design of Enzyme Inhibitors. Journal of the American Chemical Society, 2006, 128, 14004-14005.	6.6	50
15	The NHFC Dipole Orientation Effect for Pendant Exocyclic CH2F. Organic Letters, 2002, 4, 3557-3560.	2.4	38
16	Regulation of Tumor-Associated Myeloid Cell Activity by CBP/EP300 Bromodomain Modulation of H3K27 Acetylation. Cell Reports, 2019, 27, 269-281.e4.	2.9	37
17	Discovery of MK-8722: A Systemic, Direct Pan-Activator of AMP-Activated Protein Kinase. ACS Medicinal Chemistry Letters, 2018, 9, 39-44.	1.3	35
18	Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3534-3541	1.0	28

#	Article	IF	CITATIONS
19	CBP/p300 Drives the Differentiation of Regulatory T Cells through Transcriptional and Non-Transcriptional Mechanisms. Cancer Research, 2019, 79, 3916-3927.	0.4	26
20	Inhibitors of PhenylethanolamineN-Methyltransferase That Are Predicted To Penetrate the Bloodâ^'Brain Barrier:Â Design, Synthesis, and Evaluation of 3-Fluoromethyl-7-(N-substituted) Tj ETQq0 0 0 rgBT	Overlock	10_Tf 50 702
	α2-Adrenoceptor1. Journal of Medicinal Chemistry, 2004, 47, 4483-4493.	2.9	23
21	Discovery of a class of highly potent Janus Kinase 1/2 (JAK1/2) inhibitors demonstrating effective cell-based blockade of IL-13 signaling. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1522-1531.	1.0	23
22	An efficient method to access 2-substituted benzimidazoles under solvent-free conditions. Tetrahedron Letters, 2008, 49, 1910-1914.	0.7	22
23	Hit-to-Lead Optimization and Discovery of 5-((5-([1,1′-Biphenyl]-4-yl)-6-chloro-1 <i>H</i> -benzo[<i>d</i>]imidazol-2-yl)oxy)-2-methylbenzoic Acid (MK-3903): A Novel Class of Benzimidazole-Based Activators of AMP-Activated Protein Kinase. Journal of Medicinal Chemistry. 2017. 60. 9040-9052.	2.9	21
24	A Unique Approach to Design Potent and Selective Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP) Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 10151-10171.	2.9	21
25	GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2). ACS Medicinal Chemistry Letters, 2017, 8, 737-741.	1.3	18
26	3-Hydroxymethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinoline Inhibitors of Phenylethanolamine N-Methyltransferase that Display Remarkable Potency and Selectivity. Journal of Medicinal Chemistry, 2005, 48, 134-140.	2.9	17
27	Design and synthesis of a biaryl series as inhibitors for the bromodomains of CBP/P300. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 15-23.	1.0	16
28	Nanomolar Inhibitors of CNS Epinephrine Biosynthesis:Â (R)-(+)-3-Fluoromethyl-7-(N-substituted) Tj ETQq0 0 0 rg PhenylethanolamineN-Methyltransferase1. Journal of Medicinal Chemistry, 2005, 48, 1806-1812.	BT /Overlo 2.9	ock 10 Tf 50 3 15
29	GNE-371, a Potent and Selective Chemical Probe for the Second Bromodomains of Human Transcription-Initiation-Factor TFIID Subunit 1 and Transcription-Initiation-Factor TFIID Subunit 1-like. Journal of Medicinal Chemistry, 2018, 61, 9301-9315.	2.9	11
30	Exploring the active site of phenylethanolamine N-methyltransferase: 3-alkyl-7-substituted-1,2,3,4-tetrahydroisoquinoline inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 1261-1273.	1.4	9
31	Exploring the active site of phenylethanolamine N-methyltransferase with 3-hydroxyethyl- and 3-hydroxypropyl-7-substituted-1,2,3,4-tetrahydroisoquinolines. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1143-1147.	1.0	8
32	Fragment-based lead discovery of a novel class of small molecule antagonists of neuropeptide B/W receptor subtype 1 (GPR7). Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127510.	1.0	8
33	The discovery of potent antagonists of NPBWR1 (GPR7). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1014-1018.	1.0	6
34	Preclinical Safety Assessment of a Highly Selective and Potent Dual Small-Molecule Inhibitor of CBP/P300 in Rats and Dogs. Toxicologic Pathology, 2020, 48, 465-480.	0.9	6

35	A one-pot three-component reaction to access 1-alkyl-2-aryl-5-nitrobenzimidazoles under solvent-free conditions. Tetrahedron Letters, 2010, 51, 4459-4461.	0.7	4	
	Optimization of Praclinical Matabalism for Somatostatin Pacantar Subtura 5-Salactiva Antagonists			

36Optimization of Preclinical Metabolism for Somatostatin Receptor Subtype 5-Selective Antagonists.
ACS Medicinal Chemistry Letters, 2018, 9, 1088-1093.1.34