Ghazi G Al-Khateeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1397387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Asphalt Mastic Behavior Through Micromechanics. Transportation Research Record, 1999, 1681, 157-169.	1.9	201
2	Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Construction and Building Materials, 2021, 269, 121320.	7.2	93
3	The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the IDT test configuration. International Journal of Fatigue, 2014, 59, 254-261.	5.7	70
4	Properties of Portland cement-modified asphalt binder using Superpave tests. Construction and Building Materials, 2011, 25, 926-932.	7.2	51
5	Investigation of the effect of rubber on rheological properties of asphalt binders using superpave DSR. KSCE Journal of Civil Engineering, 2015, 19, 127-135.	1.9	39
6	Comparison of Simple Performance Test E [*] of Accelerated Loading Facility Mixtures and Prediction E [*] . Transportation Research Record, 2007, 1998, 1-9.	1.9	32
7	Laboratory Study for Comparing Rutting Performance of Limestone and Basalt Superpave Asphalt Mixtures. Journal of Materials in Civil Engineering, 2013, 25, 21-29.	2.9	28
8	Using oil shale ash waste as a modifier for asphalt binders. Journal of Material Cycles and Waste Management, 2013, 15, 522-529.	3.0	26
9	Review of the Superpave performance grading system and recent developments in the performance-based test methods for asphalt binder characterization. Construction and Building Materials, 2022, 319, 126063.	7.2	24
10	A Simple Quantitative Method for Identification of Failure due to Fatigue Damage. International Journal of Damage Mechanics, 2011, 20, 3-21.	4.2	23
11	A new simplified micromechanical model for asphalt mastic behavior. Construction and Building Materials, 2017, 149, 587-598.	7.2	19
12	A framework for linear viscoelastic characterization of asphalt mixtures. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	19
13	Conceptualizing the asphalt film thickness to investigate the Superpave VMA criteria. International Journal of Pavement Engineering, 2018, 19, 957-965.	4.4	18
14	Studying rutting performance of Superpave asphalt mixtures using unconfined dynamic creep and simple performance tests. Road Materials and Pavement Design, 2018, 19, 315-333.	4.0	18
15	Analysis of MSCR test results for asphalt binders with improved accuracy. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	18
16	Characterization of the shear-thinning behavior of asphalt binders with consideration of yield stress. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	16
17	Selection and verification of performance grading for asphalt binders produced in Jordan. International Journal of Pavement Engineering, 2013, 14, 116-124.	4.4	15
18	Performance assessment of bio-modified asphalt binder using extracted bio oil from date seeds waste. International Journal of Systems Assurance Engineering and Management, 2020, 11, 1260-1270.	2.4	15

GHAZI G AL-KHATEEB

#	Article	IF	CITATIONS
19	Mixture-property-independent asphalt film thickness model. Materials Today Communications, 2019, 19, 482-486.	1.9	13
20	Evaluation of Low- and Intermediate-Temperature Performance of Bio Oil-Modified Asphalt Binders. Sustainability, 2021, 13, 4039.	3.2	10
21	Effect of Medical Ash on Shear Properties of Asphalt Binder Using Superpave Dynamic Shear Rheometer (DSR). Journal of Solid Waste Technology and Management, 2012, 38, 19-27.	0.2	10
22	Shear properties of waste glass-asphalt mastics. International Journal of Pavement Research and Technology, 2019, 12, 307-314.	2.6	9
23	Mechanical properties of styrofoam-modified asphalt binders. International Journal of Pavement Research and Technology, 2020, 13, 205-211.	2.6	9
24	Mechanical Behavior of Asphalt Mastics Produced Using Waste Stone Sawdust. Advances in Materials Science and Engineering, 2018, 2018, 1-10.	1.8	7
25	Mechanistic Analyses of FHWA's Accelerated Loading Facility Pavements. Transportation Research Record, 2007, 1990, 150-161.	1.9	6
26	Innovative Materials, New Design Methods, and Advanced Characterization Techniques for Sustainable Asphalt Pavements. Advances in Materials Science and Engineering, 2019, 2019, 1-3.	1.8	6
27	Assessment of Aging at FHWA's Pavement Testing Facility. Transportation Research Record, 2005, 1940, 146-155.	1.9	6
28	Effect of Superpave restricted zone on volumetric and compaction properties of asphalt mixtures. International Journal of Pavement Research and Technology, 2017, 10, 488-496.	2.6	5
29	Mechanistic-empirical evaluation of specific polymer-modified asphalt binders effect on the rheological performance. Science Progress, 2020, 103, 003685042095987.	1.9	3
30	Improved test method for determination of the equiviscous temperature of asphalt binders. International Journal of Pavement Engineering, 2022, 23, 4561-4573.	4.4	1
31	Investigating the Physical and Rheological Properties of Date Seed Ash-Modified Asphalt Binders in the UAE. , 2022, , .		1
32	Rheological Properties of Rubber Modified Asphalt Binder in the UAE. Sustainable Civil Infrastructures, 2022, , 1083-1097.	0.2	1