Jianhui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1397014/publications.pdf

Version: 2024-02-01

932766 940134 16 774 10 16 citations h-index g-index papers 16 16 16 1487 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Selfâ€Standing CoP Nanosheets Array: A Threeâ€Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem, 2017, 4, 1840-1845.	1.7	345
2	Tunable electronic and magnetic properties of Cr2M′C2T2 (M′ = Ti or V; T = O, OH or F) Letters, 2016, 109, .	. Applied P	Physics
3	Coexistence of piezoelectricity and magnetism in two-dimensional vanadium dichalcogenides. Physical Chemistry Chemical Physics, 2019, 21, 132-136.	1.3	80
4	Investigation of magnetic and electronic properties of transition metal doped $Sc < sub > 2 < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub > CT < sub$	1.3	70
5	Stability and electronic properties of sulfur terminated two-dimensional early transition metal carbides and nitrides (MXene). Computational Materials Science, 2018, 153, 303-308.	1.4	46
6	Tuning magnetic properties of Cr2M2C3T2 (M = Ti and V) using extensile strain. Computational Materials Science, 2017, 139, 313-319.	1.4	40
7	Rationally Designed High-Performance Spin Filter Based on Two-Dimensional Half-Metal Cr2NO2. Matter, 2019, 1, 1304-1315.	5.0	30
8	High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale, 2018, 10, 19492-19497.	2.8	26
9	DyOCl: A rare-earth based two-dimensional van der Waals material with strong magnetic anisotropy. Physical Review B, 2021, 104, .	1.1	13
10	The effect of Fe vacancies and Cu adhesion on the magnetic properties of Fe ₃ GeTe ₂ . Physical Chemistry Chemical Physics, 2019, 21, 7588-7593.	1.3	11
11	Density functional study of hydrogen adsorption and diffusion on Niâ€loaded graphene and graphene oxide. International Journal of Quantum Chemistry, 2014, 114, 879-884.	1.0	8
12	Formation and Stability of Lowâ€Dimensional Structures for Group VIIIB and IB Transition Metals: The Role of sd ⁴ Hybridization. Advanced Science, 2016, 3, 1500314.	5.6	7
13	Tuning the magnetic properties of Fe3GeTe2 by doping with 3d transition-metals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 396, 127219.	0.9	7
14	Understanding the chiral selectivity of gold nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2707-2711.	0.9	6
15	A first-principles study on the adhesion of Pt layers to NiO(100) and IrO ₂ (110) surfaces. Journal of Physics Condensed Matter, 2010, 22, 015003.	0.7	3
16	Transition Metal Nanostructures: Formation and Stability of Low-Dimensional Structures for Group VIIIB and IB Transition Metals: The Role of sd4 Hybridization (Adv. Sci. 4/2016). Advanced Science, 2016, 3, .	5.6	1