
Tom Leyssens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining Racetams with a Sweetener through Complexation. Crystal Growth and Design, 2022, 22, 3016-3023.	3.0	2
2	Fungicide Precursor Racemization Kinetics for Deracemization in Complex Systems. European Journal of Organic Chemistry, 2021, 2021, 473-482.	2.4	3
3	Co-Crystallization-Induced Spontaneous Deracemization: An Optimization Study. Organic Process Research and Development, 2021, 25, 884-891.	2.7	9
4	Urea as a Cocrystal Former—Study of 3 Urea Based Pharmaceutical Cocrystals. Pharmaceutics, 2021, 13, 671.	4.5	9
5	Chiral Resolution via Cocrystallization with Inorganic Salts. Israel Journal of Chemistry, 2021, 61, 563-572.	2.3	10
6	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie - International Edition, 2021, 60, 20264-20268.	13.8	18
7	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie, 2021, 133, 20426-20430.	2.0	1
8	Unraveling the Effects of Co-Crystallization on the UV/Vis Absorption Spectra of an N-Salicylideneaniline Derivative. A Computational RI-CC2 Investigation. Molecules, 2020, 25, 4512.	3.8	1
9	Combining API in a dual-drug ternary cocrystal approach. Chemical Communications, 2020, 56, 13229-13232.	4.1	8
10	Improving Nefiracetam Dissolution and Solubility Behavior Using a Cocrystallization Approach. Pharmaceutics, 2020, 12, 653.	4.5	16
11	Chiral Resolution of Mandelic Acid through Preferential Cocrystallization with Nefiracetam. Crystal Growth and Design, 2020, 20, 7979-7988.	3.0	24
12	Cocrystallizationâ€Induced Spontaneous Deracemization: A General Thermodynamic Approach to Deracemization. Angewandte Chemie, 2020, 132, 11399-11402.	2.0	10
13	Cocrystallizationâ€Induced Spontaneous Deracemization: A General Thermodynamic Approach to Deracemization. Angewandte Chemie - International Edition, 2020, 59, 11303-11306.	13.8	36
14	Capturing the Monomeric (L)CuH in NHCâ€Capped Cyclodextrin: Cavityâ€Controlled Chemoselective Hydrosilylation of α,βâ€Unsaturated Ketones. Angewandte Chemie, 2020, 132, 7661-7667.	2.0	13
15	Capturing the Monomeric (L)CuH in NHC apped Cyclodextrin: Cavity ontrolled Chemoselective Hydrosilylation of α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2020, 59, 7591-7597.	13.8	44
16	Chiral Resolution of <i>RS-</i> Oxiracetam upon Cocrystallization with Pharmaceutically Acceptable Inorganic Salts. Crystal Growth and Design, 2020, 20, 2602-2607.	3.0	18
17	Periodic DFT Study of the Effects of Coâ€Crystallization on a Nâ€Salicylideneaniline Molecular Switch. ChemPhysChem, 2019, 20, 2434-2442.	2.1	3
18	Identifying, Characterizing, and Understanding Nefiracetam in Its Solid State Forms: A Potential Antidementia Drug. Journal of Pharmaceutical Sciences, 2019, 108, 3616-3622.	3.3	3

TOM LEYSSENS

#	Article	IF	CITATIONS
19	Enantioâ€ , Regio―and Chemoselective Copperâ€Catalyzed 1,2â€Hydroborylation of Acylsilanes. Chemistry - A European Journal, 2019, 25, 8705-8708.	3.3	15
20	lonic Cocrystals of Etiracetam and Levetiracetam: The Importance of Chirality for Ionic Cocrystals. Crystal Growth and Design, 2019, 19, 2446-2454.	3.0	17
21	Opening Pandora's Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals. Crystal Growth and Design, 2018, 18, 954-961.	3.0	44
22	Enabling Enantiopurity: Combining Racemization and Dual-Drug Co-crystal Resolution. Crystal Growth and Design, 2018, 18, 3654-3660.	3.0	26
23	Dual-Drug Chiral Resolution: Enantiospecific Cocrystallization of (<i>S</i>)-Ibuprofen Using Levetiracetam. Crystal Growth and Design, 2018, 18, 441-448.	3.0	42
24	Solid-state chiral resolution mediated by stoichiometry: crystallizing etiracetam with ZnCl ₂ . Chemical Communications, 2018, 54, 10890-10892.	4.1	20
25	Predicting Keto–Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines. Journal of Physical Chemistry A, 2018, 122, 5370-5374.	2.5	19
26	Effects of Empirical Dispersion Energy on the Geometrical Parameters and Relative Energy of a Salicylideneaniline Molecular Switch in the Solid State. Crystals, 2018, 8, 125.	2.2	6
27	Assessing Density Functional Theory Approaches for Predicting the Structure and Relative Energy of Salicylideneaniline Molecular Switches in the Solid State. Journal of Physical Chemistry C, 2017, 121, 6898-6908.	3.1	25
28	Polymorphic and Isomorphic Cocrystals of a <i>N</i> -Salicylidene-3-aminopyridine with Dicarboxylic Acids: Tuning of Solid-State Photo- and Thermochromism. Journal of Physical Chemistry C, 2016, 120, 10001-10008.	3.1	51
29	Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. Organic Process Research and Development, 2015, 19, 3-62.	2.7	329
30	Structural insight into cocrystallization with zwitterionic co-formers: cocrystals of S-naproxen. CrystEngComm, 2014, 16, 8185.	2.6	31
31	Mechanistic Insight into the (NHC)copper(I)-Catalyzed Hydrosilylation of Ketones. Organometallics, 2014, 33, 1953-1963.	2.3	70
32	Cocrystal Formation between Chiral Compounds: How Cocrystals Differ from Salts. Crystal Growth and Design, 2014, 14, 3996-4004.	3.0	57
33	NHC–copper(I) bifluoride complexes: "Auto-activating―catalysts. Journal of Organometallic Chemistry, 2013, 730, 95-103.	1.8	28
34	On the influence of using a zwitterionic coformer for cocrystallization: structural focus on naproxen–proline cocrystals. CrystEngComm, 2013, 15, 3341.	2.6	44
35	The importance of screening solid-state phases of a racemic modification of a chiral drug: thermodynamic and structural characterization of solid-state phases of etiracetam. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 371-378.	1.1	8
36	Innovative Chiral Resolution Using Enantiospecific Co-Crystallization in Solution. Crystal Growth and Design, 2012, 12, 3374-3378.	3.0	93

TOM LEYSSENS

#	Article	lF	CITATIONS
37	Advances in Pharmaceutical Co-crystal Screening: Effective Co-crystal Screening through Structural Resemblance. Crystal Growth and Design, 2012, 12, 475-484.	3.0	77
38	Importance of Solvent Selection for Stoichiometrically Diverse Cocrystal Systems: Caffeine/Maleic Acid 1:1 and 2:1 Cocrystals. Crystal Growth and Design, 2012, 12, 1520-1530.	3.0	69
39	Unprecedented Copper(I) Bifluoride Complexes: Synthesis, Characterization and Reactivity. Chemistry - A European Journal, 2012, 18, 793-798.	3.3	51
40	Optimization of a Crystallization by Online FBRM Analysis of Needle-Shaped Crystals. Organic Process Research and Development, 2011, 15, 413-426.	2.7	51
41	Negative Hyperconjugation in Phosphorus Stabilized Carbanions. Journal of Organic Chemistry, 2008, 73, 2725-2730.	3.2	51
42	Origin of Enantioselective Hydrogenation of Ketones by RuH2(diphosphine)(diamine) Catalysts: A Theoretical Study. Organometallics, 2008, 27, 1514-1523.	2.3	50
43	How Important Is Metalâ^'Ligand Back-Bonding toward YX3Ligands (Y = N, P, C, Si)? An NBO Analysis. Organometallics, 2007, 26, 2637-2645.	2.3	79
44	Insight into metal–phosphorus bonding from analysis of the electronic structure of redox pairs of metal–phosphine complexes. New Journal of Chemistry, 2005, 29, 1424.	2.8	32
45	<scp>l</scp> -Proline, a resolution agent able to target both enantiomers of mandelic acid: an exciting case of stoichiometry controlled chiral resolution. Chemical Communications, 0, , .	4.1	5