Xiaowu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396859/publications.pdf

Version: 2024-02-01

1040056 996975 16 361 9 15 citations h-index g-index papers 16 16 16 358 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Internal Adduct Formation of Active Intramolecular C ₄ -bridged Frustrated Phosphane/Borane Lewis Pairs. Journal of the American Chemical Society, 2014, 136, 3293-3303.	13.7	113
2	Tuning the Porphyrin Building Block in Selfâ€Assembled Cages for Branchedâ€Selective Hydroformylation of Propene. Chemistry - A European Journal, 2017, 23, 14769-14777.	3.3	47
3	Influences of Fluorine Substituents on Iminopyridine Fe(II)- and Co(II)-Catalyzed Isoprene Polymerization. Polymers, 2018, 10, 934.	4.5	29
4	Synthesis and characterization of aminopyridine iron(<scp>ii</scp>) chloride catalysts for isoprene polymerization: sterically controlled monomer enchainment. Dalton Transactions, 2019, 48, 7862-7874.	3.3	25
5	Iminoimidazoleâ€based Co(II) and Fe(II) complexes: Syntheses, characterization, and catalytic behaviors for isoprene polymerization. Journal of Polymer Science Part A, 2019, 57, 767-775.	2.3	24
6	Controlled isoprene polymerization mediated by iminopyridineâ€iron (II) acetylacetonate preâ€catalysts. Applied Organometallic Chemistry, 2019, 33, e4836.	3.5	22
7	An unsymmetrical binuclear iminopyridine-iron complex and its catalytic isoprene polymerization. Chemical Communications, 2020, 56, 8846-8849.	4.1	21
8	N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of \hat{l} -valerolactone. Polymer Chemistry, 2019, 10, 1832-1838.	3.9	20
9	Exploration of the Synergistic Effect in a One-Component Lewis Pair System: Serving as a Dual Initiator and Catalyst in the Ring-Opening Polymerization of Epoxides. ACS Catalysis, 2022, 12, 8434-8443.	11.2	17
10	Binuclear aluminum Lewis acid and its behavior in the polymerization of methyl methacrylate and $\langle i \rangle n \langle i \rangle$ -butyl acrylate. Polymer Chemistry, 2020, 11, 5526-5533.	3.9	10
11	("Ferrocene-salaldiminatoâ€)zirconium Complexes for Ethylene Polymerization Catalysis: The Role of the Bulky Substituents. Organometallics, 2012, 31, 6741-6752.	2.3	9
12	lonic (Co)Organocatalyst with (Thio)Urea Anion and Tetra‑ <i>n</i> àê'butyl Ammonium Cation for the Polymerization of γâ€Butyrolactone. Macromolecular Chemistry and Physics, 2020, 221, 2000172.	2.2	9
13	Controlled and efficient polymerization of methyl methacrylate catalyzed by pyridinylidenaminophosphine based Lewis pairs. Polymer Chemistry, 2021, 12, 4226-4234.	3.9	8
14	Synthesis, Characterization of Pyridyl Heterocyclic Olefins (PHOs) and Activation of Heterocumulenes. ChemistrySelect, 2019, 4, 8655-8660.	1.5	6
15	Synthetic and mechanistic aspects of anionic polymerization of methyl methacrylate using tetrabutyl ammonium thioimidate. Journal of Polymer Science, 2021, 59, 764-774.	3.8	1
16	1,5,7-Triazabicylodec-5-ene-Promoted Direct Vinylogous Aldol Reaction for the Synthesis of 3-Hydroxy-2-oxoindole Derivatives. Synlett, 2019, 30, 573-576.	1.8	0