Matthew F Krummel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1396547/matthew-f-krummel-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

110	12,643	42	112
papers	citations	h-index	g-index
134	17,100 ext. citations	19.7	6.52
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
110	Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer <i>Cancer Immunology Research</i> , 2022 , 10, 403-419	12.5	O
109	Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. <i>Cell Reports</i> , 2022 , 39, 110865	10.6	О
108	Discovering dominant tumor immune archetypes in a pan-cancer census Cell, 2021,	56.2	10
107	Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. <i>Cell Reports</i> , 2021 , 37, 109844	10.6	6
106	Archetypes of checkpoint-responsive immunity. <i>Trends in Immunology</i> , 2021 , 42, 960-974	14.4	O
105	Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism. <i>Gastroenterology</i> , 2021 ,	13.3	1
104	Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging. <i>Nature Communications</i> , 2021 , 12, 1916	17.4	5
103	An expanded universe of cancer targets. <i>Cell</i> , 2021 , 184, 1142-1155	56.2	38
102	A tumor-specific mechanism of T enrichment mediated by the integrin UB . <i>Science Immunology</i> , 2021 , 6,	28	2
101	Impaired antibacterial immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19 2021 ,		5
100	Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19 2021 ,		2
99	DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells 2021 , 9,		5
98	The WAVE complex associates with sites of saddle membrane curvature. <i>Journal of Cell Biology</i> , 2021 , 220,	7-3	9
97	SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator 2021,		6
96	Global absence and targeting of protective immune states in severe COVID-19. <i>Nature</i> , 2021 , 591, 124-	130.4	100
95	A "data sharing trust" model for rapid, collaborative science. <i>Cell</i> , 2021 , 184, 566-570	56.2	2
94	Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19 2021 ,		9

93	Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. <i>Nature Communications</i> , 2021 , 12, 5152	17.4	7
92	Layilin Anchors Regulatory T Cells in Skin. <i>Journal of Immunology</i> , 2021 , 207, 1763-1775	5.3	O
91	Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. <i>Science Translational Medicine</i> , 2021 , 13, eabh2624	17.5	34
90	Active surveillance characterizes human intratumoral T cell exhaustion. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	5
89	Tumor Immune Profiling-Based Neoadjuvant Immunotherapy for Locally Advanced Melanoma. <i>Annals of Surgical Oncology</i> , 2020 , 27, 4122-4130	3.1	5
88	Visualizing Synaptic Transfer of Tumor Antigens among Dendritic Cells. Cancer Cell, 2020 , 37, 786-799.6	25 24.3	48
87	Carpet-bombing tumors with IFN-[] <i>Nature Cancer</i> , 2020 , 1, 270-272	15.4	
86	ZipSeq: barcoding for real-time mapping of single cell transcriptomes. <i>Nature Methods</i> , 2020 , 17, 833-8	43 1.6	33
85	Reinvigorating NIH Grant Peer Review. <i>Immunity</i> , 2020 , 52, 1-3	32.3	13
84	Global Absence and Targeting of Protective Immune States in Severe COVID-19 2020 ,		1
83	Global Absence and Targeting of Protective Immune States in Severe COVID-19 2020 ,		3
82	Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. <i>Journal of Organic Chemistry</i> , 2020 , 85, 2945-2955	4.2	7
81	mDia1/3-dependent actin polymerization spatiotemporally controls LAT phosphorylation by Zap70 at the immune synapse. <i>Science Advances</i> , 2020 , 6, eaay2432	14.3	7
8o	The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. <i>Nature Immunology</i> , 2020 , 21, 835-847	19.1	98
79	SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. <i>Cell Metabolism</i> , 2020 , 32, 1063-1075.e7	24.6	43
78	Lessons of COVID-19: A roadmap for post-pandemic science. <i>Journal of Experimental Medicine</i> , 2020 , 217,	16.6	4
77	Dendritic cells in cancer immunology and immunotherapy. <i>Nature Reviews Immunology</i> , 2020 , 20, 7-24	36.5	589
76	Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. <i>Science Immunology</i> , 2019 , 4,	28	54

75	Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4 T Cell Immunity. <i>Cell</i> , 2019 , 177, 556-571.e16	56.2	195
74	Immunity as a continuum of archetypes. <i>Science</i> , 2019 , 364, 28-29	33.3	15
73	Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Frontiers in Immunology, 2019, 10, 1611	8.4	53
72	Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. <i>JCI Insight</i> , 2019 , 4,	9.9	27
71	Adventitial Stromal Cells Define Group 2 Innate Lymphoid Cell Tissue Niches. <i>Immunity</i> , 2019 , 50, 707-7	23/2e/6	133
70	Universal Principled Review: A Community-Driven Method to Improve Peer Review. <i>Cell</i> , 2019 , 179, 144	1 ₅ 164 <u>2</u> 45	5 4
69	Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. <i>Mucosal Immunology</i> , 2019 , 12, 64-76	9.2	27
68	Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. <i>American Journal of Pathology</i> , 2018 , 188, 1161-1170	5.8	10
67	Understanding the tumor immune microenvironment (TIME) for effective therapy. <i>Nature Medicine</i> , 2018 , 24, 541-550	50.5	1772
66	TIM-3 Regulates CD103 Dendritic Cell Function and Response to Chemotherapy in Breast Cancer. <i>Cancer Cell</i> , 2018 , 33, 60-74.e6	24.3	141
65	Paracrine costimulation of IFN-Isignaling by integrins modulates CD8 T cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11585-11596	0 ^{11.5}	28
64	Subcellular Localization of Antigen in Keratinocytes Dictates Delivery of CD4 T-cell Help for the CTL Response upon Therapeutic DNA Vaccination into the Skin. <i>Cancer Immunology Research</i> , 2018 , 6, 835-8	34 7 ·5	7
63	A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. <i>Nature Medicine</i> , 2018 , 24, 1178-1191	50.5	404
62	Control of an Unusual Photo-Claisen Rearrangement in Coumarin Caged Tamoxifen through an Extended Spacer. <i>ACS Chemical Biology</i> , 2017 , 12, 1001-1010	4.9	32
61	Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. <i>Science</i> , 2017 , 356,	33.3	133
60	The Lung is a Host Defense Niche for Immediate Neutrophil-Mediated Vascular Protection. <i>Science Immunology</i> , 2017 , 2,	28	96
59	The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. <i>Nature</i> , 2017 , 544, 105-109	50.4	541
58	Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy. <i>JCI Insight</i> , 2017 , 2,	9.9	44

(2015-2016)

57	Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. <i>Cancer Cell</i> , 2016 , 30, 324-336	24.3	426
56	Visualization of immediate immune responses to pioneer metastatic cells in the lung. <i>Nature</i> , 2016 , 531, 513-7	50.4	247
55	T cell migration, search strategies and mechanisms. <i>Nature Reviews Immunology</i> , 2016 , 16, 193-201	36.5	208
54	STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. <i>Cancer Research</i> , 2016 , 76, 1416-28	10.1	60
53	A septin requirement differentiates autonomous and contact-facilitated T cell proliferation. <i>Nature Immunology</i> , 2016 , 17, 315-22	19.1	16
52	Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. <i>JCI Insight</i> , 2016 , 1, e89289	9.9	17
51	Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy. <i>PLoS ONE</i> , 2016 , 11, e0150430	3.7	4
50	Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage Differentiation in Inflamed Lung. <i>PLoS ONE</i> , 2016 , 11, e0165064	3.7	6
49	Micro-Magellan: open-source, sample-adaptive, acquisition software for optical microscopy. <i>Nature Methods</i> , 2016 , 13, 807-809	21.6	13
48	CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity. <i>Cancer Research</i> , 2016 , 76, 6483-6494	10.1	46
47	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. <i>Journal of Experimental Medicine</i> , 2016 , 213, 2293-2314	16.6	66
46	iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation. <i>Cell Reports</i> , 2016 , 16, 3260-3272	10.6	42
45	Antigen recognition in the islets changes with progression of autoimmune islet infiltration. <i>Journal of Immunology</i> , 2015 , 194, 522-30	5.3	24
44	TGF-EDependent Dendritic Cell Chemokinesis in Murine Models of Airway Disease. <i>Journal of Immunology</i> , 2015 , 195, 1182-90	5.3	18
43	The emerging understanding of myeloid cells as partners and targets in tumor rejection. <i>Cancer Immunology Research</i> , 2015 , 3, 313-9	12.5	37
42	Adaptive Immune Regulation of Mammary Postnatal Organogenesis. <i>Developmental Cell</i> , 2015 , 34, 493	-5042	60
41	The subtle hands of self-reactivity in peripheral T cells. <i>Nature Immunology</i> , 2015 , 16, 10-1	19.1	1
40	Mast cells present protrusions into blood vessels upon tracheal allergen challenge in mice. <i>PLoS ONE</i> , 2015 , 10, e0118513	3.7	8

39	A critical role for dendritic cells in the evolution of IL-1Emediated murine airway disease. <i>Journal of Immunology</i> , 2015 , 194, 3962-9	5.3	8
38	Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and I cells. <i>Immunity</i> , 2014 , 40, 414-24	32.3	183
37	Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. <i>Cancer Cell</i> , 2014 , 26, 638-52	24.3	592
36	Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. <i>Cell</i> , 2014 , 158, 492-505	56.2	82
35	The spatiotemporal cellular dynamics of lung immunity. <i>Trends in Immunology</i> , 2014 , 35, 379-86	14.4	18
34	Assessing and benchmarking multiphoton microscopes for biologists. <i>Methods in Cell Biology</i> , 2014 , 123, 135-51	1.8	1
33	Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. <i>Journal of Experimental Medicine</i> , 2014 , 211, 1281-8	16.6	42
32	Modes and mechanisms of T cell motility: roles for confinement and Myosin-IIA. <i>Current Opinion in Cell Biology</i> , 2014 , 30, 9-16	9	30
31	Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice. <i>PLoS ONE</i> , 2014 , 9, e102356	3.7	30
30	Type 2 innate lymphoid cells control eosinophil homeostasis. <i>Nature</i> , 2013 , 502, 245-8	5 0.4	652
)-	Type 2 illinate tymphola ceus controt cosmophic nomeostasis. Natare, 2015 , 302, 213 0	50.4	552
29	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. <i>Immunological Reviews</i> , 2013 , 251, 80-96	11.3	10
	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses.		
29	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. Immunological Reviews, 2013 , 251, 80-96 Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells.	11.3	10
29	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. <i>Immunological Reviews</i> , 2013 , 251, 80-96 Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. <i>Nature Immunology</i> , 2013 , 14, 356-63 Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm.	11.3	10
29 28 27	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. <i>Immunological Reviews</i> , 2013 , 251, 80-96 Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. <i>Nature Immunology</i> , 2013 , 14, 356-63 Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm. <i>Immunological Reviews</i> , 2013 , 256, 148-59 Activated T cell trans-endothelial migration relies on myosin-IIA contractility for squeezing the cell	11.3 19.1 11.3	10 95 20
29 28 27 26	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. <i>Immunological Reviews</i> , 2013 , 251, 80-96 Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. <i>Nature Immunology</i> , 2013 , 14, 356-63 Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm. <i>Immunological Reviews</i> , 2013 , 256, 148-59 Activated T cell trans-endothelial migration relies on myosin-IIA contractility for squeezing the cell nucleus through endothelial cell barriers. <i>PLoS ONE</i> , 2013 , 8, e75151	11.3 19.1 11.3	10 95 20 42
29 28 27 26 25	Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. <i>Immunological Reviews</i> , 2013 , 251, 80-96 Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. <i>Nature Immunology</i> , 2013 , 14, 356-63 Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm. <i>Immunological Reviews</i> , 2013 , 256, 148-59 Activated T cell trans-endothelial migration relies on myosin-IIA contractility for squeezing the cell nucleus through endothelial cell barriers. <i>PLoS ONE</i> , 2013 , 8, e75151 Live imaging of the lung. <i>Current Protocols in Cytometry</i> , 2012 , Chapter 12, Unit12.28 Integration of the movement of signaling microclusters with cellular motility in immunological	11.3 19.1 11.3 3.7 3.6	10 95 20 42 30

21	Regulation of T cell priming by lymphoid stroma. <i>PLoS ONE</i> , 2011 , 6, e26138	3.7	76
20	Stabilized imaging of immune surveillance in the mouse lung. <i>Nature Methods</i> , 2011 , 8, 91-6	21.6	265
19	Illuminating emergent activity in the immune system by real-time imaging. <i>Nature Immunology</i> , 2010 , 11, 554-7	19.1	7
18	Cell-laden microwells for the study of multicellularity in lymphocyte fate decisions. <i>Biomaterials</i> , 2010 , 31, 3422-8	15.6	26
17	The immunological synapse: a dynamic platform for local signaling. <i>Journal of Clinical Immunology</i> , 2010 , 30, 364-72	5.7	34
16	Control of cortical rigidity by the cytoskeleton: emerging roles for septins. <i>Cytoskeleton</i> , 2010 , 67, 477-	8 6 .4	59
15	Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. <i>Nature Immunology</i> , 2009 , 10, 1185-92	19.1	530
14	Two-photon imaging of the immune system: a custom technology platform for high-speed, multicolor tissue imaging of immune responses. <i>Current Topics in Microbiology and Immunology</i> , 2009 , 334, 1-29	3.3	30
13	A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. <i>Immunity</i> , 2008 , 29, 238-48	32.3	98
12	Immunological synapses: breaking up may be good to do. <i>Cell</i> , 2007 , 129, 653-5	56.2	7
11	Maintenance and modulation of T cell polarity. <i>Nature Immunology</i> , 2006 , 7, 1143-9	19.1	146
10	Mechanisms of T cell motility and arrest: deciphering the relationship between intra- and extracellular determinants. <i>Seminars in Immunology</i> , 2005 , 17, 387-99	10.7	32
9	Dynamics of the immunological synapse: finding, establishing and solidifying a connection. <i>Current Opinion in Immunology</i> , 2002 , 14, 66-74	7.8	166
8	Imaging synapse formation during thymocyte selection: inability of CD3zeta to form a stable central accumulation during negative selection. <i>Immunity</i> , 2002 , 16, 595-606	32.3	122
7	Enhancement of antitumor immunity by CTLA-4 blockade. <i>Science</i> , 1996 , 271, 1734-6	33.3	2546
6	Imaging and Analysis of OT1 T Cell Activation on Lipid Bilayers. <i>Protocol Exchange</i> ,		4
5	ZipSeq : Barcoding for Real-time Mapping of Single Cell Transcriptomes		4
4	Pulmonary natural killer cells control neutrophil intravascular motility and response to acute inflammat	tion	2

3	WAVE complex self-organization templates lamellipodial formation	3
2	A Pan-Cancer Census of Dominant Tumor Immune Archetypes	3

Active Surveillance Characterizes Human Intratumoral T Cell Exhaustion 1

WAVE complex self-organization templates lamellipodial formation