
Anselme L Perrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. International Journal of Molecular Sciences, 2022, 23, 1684.	4.1	6
2	Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain, 2022, 145, 1584-1597.	7.6	7
3	Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. Science Advances, 2021, 7, .	10.3	42
4	Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. International Journal of Molecular Sciences, 2021, 22, 7524.	4.1	2
5	CTIP2-Regulated Reduction in PKA-Dependent DARPP32 Phosphorylation in Human Medium Spiny Neurons: Implications for Huntington Disease. Stem Cell Reports, 2019, 13, 448-457.	4.8	21
6	MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nature Communications, 2019, 10, 4357.	12.8	53
7	Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates. Neurobiology of Disease, 2019, 130, 104484.	4.4	8
8	Propagation of Î \pm -Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports, 2019, 12, 230-244.	4.8	99
9	The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin. Brain, 2018, 141, 1434-1454.	7.6	23
10	IO7â€Allele specific gene editing for huntington's disease mediated by the KAMICAS9 self-inactivating CRISPR/CAS9 system. , 2018, , .		0
11	Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay. ENeuro, 2018, 5, ENEURO.0234-18.2018.	1.9	10
12	Human Induced Pluripotent Stem Cell-Derived Astrocytes Are Differentially Activated by Multiple Sclerosis-Associated Cytokines. Stem Cell Reports, 2018, 11, 1199-1210.	4.8	114
13	I24â€MHC matching fails to prevent long-term rejection of ipsc-derived neurons in non-human primate. , 2018, , .		0
14	A40â€Modulation of DARPP32 homeostasis by htt protein in derivatives of disease-specific and control human pluripotent stem cells. , 2018, , .		0
15	B16â€Astrocytes derived from patient specific human pluripotent stem cells: a valuable biological resource for target identification in hd?. , 2018, , .		0
16	Preclinical Evaluation of a Lentiviral Vector for Huntingtin Silencing. Molecular Therapy - Methods and Clinical Development, 2017, 5, 259-276.	4.1	13
17	The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Reports, 2017, 20, 2980-2991.	6.4	96
18	Differentiation of nonhuman primate pluripotent stem cells into functional keratinocytes. Stem Cell Research and Therapy, 2017, 8, 285.	5.5	3

ANSELME L PERRIER

#	Article	IF	CITATIONS
19	Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells. PLoS ONE, 2016, 11, e0148680.	2.5	22
20	327. Genetic Editing for Huntington's Disease. Molecular Therapy, 2016, 24, S131.	8.2	0
21	Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome. EBioMedicine, 2016, 9, 293-305.	6.1	79
22	A Quantitative Approach to Characterize MR Contrasts with Histology. Lecture Notes in Computer Science, 2016, , 104-115.	1.3	0
23	Allele-Specific Silencing of Mutant Huntingtin in Rodent Brain and Human Stem Cells. PLoS ONE, 2014, 9, e99341.	2.5	45
24	Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson's Disease. Cell Stem Cell, 2014, 15, 653-665.	11.1	373
25	High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells, 2013, 31, 1816-1828.	3.2	69
26	Embryonic stem cells neural differentiation qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and regionalization. Stem Cells, 2013, 31, 1763-1774.	3.2	100
27	Early transcriptional changes linked to naturally occurring Huntington's disease mutations in neural derivatives of human embryonic stem cells. Human Molecular Genetics, 2012, 21, 3883-3895.	2.9	82
28	Derivation of striatal neurons from human stem cells. Progress in Brain Research, 2012, 200, 373-404.	1.4	3
29	How Can Human Pluripotent Stem Cells Help Decipher and Cure Huntington's Disease?. Cell Stem Cell, 2012, 11, 153-161.	11.1	17
30	Human Pluripotent Stem Cell Therapy for Huntington's Disease: Technical, Immunological, and Safety Challenges. Neurotherapeutics, 2011, 8, 562-576.	4.4	27
31	The Postischemic Environment Differentially Impacts Teratoma or Tumor Formation After Transplantation of Human Embryonic Stem Cell-Derived Neural Progenitors. Stroke, 2010, 41, 153-159.	2.0	127
32	Human embryonic stem cells and genomic instability. Regenerative Medicine, 2009, 4, 899-909.	1.7	47
33	Evolutionary Forces Shape the Human RFPL1,2,3 Genes toward a Role in Neocortex Development. American Journal of Human Genetics, 2008, 83, 208-218.	6.2	29
34	Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nature Biotechnology, 2008, 26, 1364-1366.	17.5	213
35	Improvement of Culture Conditions of Human Embryoid Bodies Using a Controlled Perfused and Dialyzed Bioreactor System. Tissue Engineering - Part C: Methods, 2008, 14, 289-298.	2.1	42
36	Striatal progenitors derived from human ES cells mature into DARPP32 neurons <i>in vitro</i> and in quinolinic acid-lesioned rats. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16707-16712.	7.1	268

ANSELME L PERRIER

#	Article	IF	CITATIONS
37	Long-Term Survival of Dopamine Neurons Derived from Parthenogenetic Primate Embryonic Stem Cells (Cyno-1) After Transplantation. Stem Cells, 2005, 23, 914-922.	3.2	122
38	Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12543-12548.	7.1	922
39	Expression of PRiMA in the mouse brain: membrane anchoring and accumulation of 'tailed' acetylcholinesterase. European Journal of Neuroscience, 2003, 18, 1837-1847.	2.6	39
40	Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnology, 2003, 21, 1200-1207.	17.5	585
41	Making and repairing the mammalian brain—in vitro production of dopaminergic neurons. Seminars in Cell and Developmental Biology, 2003, 14, 181-189.	5.0	32
42	PRiMA. Neuron, 2002, 33, 275-285.	8.1	233
43	Two Distinct Proteins Are Associated with Tetrameric Acetylcholinesterase on the Cell Surface. Journal of Biological Chemistry, 2000, 275, 34260-34265.	3.4	41