
Aruna Dharshan De Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/139641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of two rapid test kits with real time polymerase chain reaction for early diagnosis of dengue in Sri Lanka. Journal of Immunoassay and Immunochemistry, 2022, 43, 213-221.	0.5	2
2	A Population of CD4+CD8+ Double-Positive T Cells Associated with Risk of Plasma Leakage in Dengue Viral Infection. Viruses, 2022, 14, 90.	1.5	8
3	Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses, 2022, 14, 242.	1.5	13
4	Transcriptomics of Acute DENV-Specific CD8+ T Cells Does Not Support Qualitative Differences as Drivers of Disease Severity. Vaccines, 2022, 10, 612.	2.1	6
5	Pre-existing T Cell Memory against Zika Virus. Journal of Virology, 2021, 95, .	1.5	11
6	Evaluation of ELISA-Based Multiplex Peptides for the Detection of Human Serum Antibodies Induced by Zika Virus Infection across Various Countries. Viruses, 2021, 13, 1319.	1.5	2
7	Nonclonal <i>Burkholderia pseudomallei</i> Population in Melioidosis Case Cluster, Sri Lanka. Emerging Infectious Diseases, 2021, 27, 2955-2957.	2.0	7
8	Biogeography and genetic diversity of clinical isolates of Burkholderia pseudomallei in Sri Lanka. PLoS Neglected Tropical Diseases, 2021, 15, e0009917.	1.3	6
9	Outcomes among children and adults at risk of severe dengue in Sri Lanka: Opportunity for outpatient case management in countries with high disease burden. PLoS Neglected Tropical Diseases, 2021, 15, e0010091.	1.3	4
10	Genetic risk for dengue hemorrhagic fever and dengue fever in multiple ancestries. EBioMedicine, 2020, 51, 102584.	2.7	10
11	Geospatial analysis of dengue emergence in rural areas in the Southern Province of Sri Lanka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 408-414.	0.7	6
12	Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site. Cell Host and Microbe, 2020, 28, 699-711.e7.	5.1	40
13	T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. Journal of Virology, 2020, 94, .	1.5	49
14	High Levels of Serum Angiopoietin 2 and Angiopoietin 2/1 Ratio at the Critical Stage of Dengue Hemorrhagic Fever in Patients and Association with Clinical and Biochemical Parameters. Journal of Clinical Microbiology, 2020, 58, .	1.8	15
15	An increase in p62/NBR1 levels in melioidosis patients of Sri Lanka exhibit a characteristic of potential host biomarker. Journal of Medical Microbiology, 2020, 69, 1240-1248.	0.7	1
16	Characterization of Magnitude and Antigen Specificity of HLA-DP, DQ, and DRB3/4/5 Restricted DENV-Specific CD4+ T Cell Responses. Frontiers in Immunology, 2019, 10, 1568.	2.2	35
17	Whole-Genome Sequences of Eight Clinical Isolates of Burkholderia pseudomallei from Melioidosis Patients in Eastern Sri Lanka. Microbiology Resource Announcements, 2019, 8, .	0.3	5
18	A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Science Immunology, 2019, 4, .	5.6	147

#	Article	IF	CITATIONS
19	Molecular Signatures of Dengue Virus-Specific IL-10/IFN-Î ³ Co-producing CD4ÂT Cells and Their Association with Dengue Disease. Cell Reports, 2019, 29, 4482-4495.e4.	2.9	35
20	Dengue type 1 viruses circulating in humans are highly infectious and poorly neutralized by human antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 227-232.	3.3	69
21	Dengue-specific CD8+ T cell subsets display specialized transcriptomic and TCR profiles. Journal of Clinical Investigation, 2019, 129, 1727-1741.	3.9	41
22	Respiratory Viral Infection: An Underappreciated Cause of Acute Febrile Illness Admissions in Southern Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2019, 100, 672-680.	0.6	8
23	Longitudinal Analysis of Antibody Cross-neutralization Following Zika Virus and Dengue Virus Infection in Asia and the Americas. Journal of Infectious Diseases, 2018, 218, 536-545.	1.9	124
24	Precursors of human CD4 ⁺ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Science Immunology, 2018, 3, .	5.6	209
25	Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. Journal of Clinical Microbiology, 2018, 56, .	1.8	53
26	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka. Human Immunology, 2018, 79, 87-88.	1.2	7
27	Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus–Specific CD8+ T Cells. Journal of Immunology, 2018, 201, 3487-3491.	0.4	70
28	Preliminary study on chronic granulomatous disease in Sri Lanka. Allergy, Asthma and Clinical Immunology, 2018, 14, 37.	0.9	7
29	Is Total Serum Nitrite and Nitrate (NOx) Level in Dengue Patients a Potential Prognostic Marker of Dengue Hemorrhagic Fever?. Disease Markers, 2018, 2018, 1-9.	0.6	9
30	Melioidosis in Sri Lanka. Tropical Medicine and Infectious Disease, 2018, 3, 22.	0.9	21
31	Evaluation of the WHO 2009 classification for diagnosis of acute dengue in a large cohort of adults and children in Sri Lanka during a dengue-1 epidemic. PLoS Neglected Tropical Diseases, 2018, 12, e0006258.	1.3	31
32	Clinical, Bacteriologic, and Geographic Stratification of Melioidosis Emerges from the Sri Lankan National Surveillance Program. American Journal of Tropical Medicine and Hygiene, 2018, 98, 607-615.	0.6	8
33	An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry. Journal of Immunology, 2017, 198, 1748-1758.	0.4	69
34	Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. Journal of Virology, 2017, 91, .	1.5	24
35	Calprotectin as a Biomarker for Melioidosis Disease Progression and Management. Journal of Clinical Microbiology, 2017, 55, 1205-1210.	1.8	10
36	Gene Expression Profile of Human Cytokines in Response to Burkholderia pseudomallei Infection. MSphere, 2017, 2, .	1.3	22

#	Article	IF	CITATIONS
37	Human CD4 ⁺ T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity. Journal of Virology, 2017, 91, .	1.5	83
38	Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. Journal of Virology, 2017, 91, .	1.5	148
39	Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nature Communications, 2017, 8, 1473.	5.8	208
40	Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas. Frontiers in Immunology, 2017, 8, 1309.	2.2	77
41	Analysis of Dengue Serotype 4 in Sri Lanka during the 2012–2013 Dengue Epidemic. American Journal of Tropical Medicine and Hygiene, 2017, 97, 130-136.	0.6	12
42	Host gene expression analysis in Sri Lankan melioidosis patients. PLoS Neglected Tropical Diseases, 2017, 11, e0005643.	1.3	17
43	Burden and Seasonality of Viral Acute Respiratory Tract Infections among Outpatients in Southern Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2017, 97, 88-96.	0.6	16
44	Extended-spectrum ß-Lactamase-producing <i>Enterobacteriaceae</i> as a Common Cause of Urinary Tract Infections in Sri Lanka. Infection and Chemotherapy, 2016, 48, 160.	1.0	18
45	Emergence of Epidemic Dengue-1 Virus in the Southern Province of Sri Lanka. PLoS Neglected Tropical Diseases, 2016, 10, e0004995.	1.3	24
46	Laboratory-Enhanced Dengue Sentinel Surveillance in Colombo District, Sri Lanka: 2012-2014. PLoS Neglected Tropical Diseases, 2016, 10, e0004477.	1.3	26
47	HLA-DRB1 Alleles Are Associated With Different Magnitudes of Dengue Virus–Specific CD4 ⁺ T-Cell Responses. Journal of Infectious Diseases, 2016, 214, 1117-1124.	1.9	88
48	Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio, 2016, 7, .	1.8	52
49	Immunodominant Dengue Virus-Specific CD8 ⁺ T Cell Responses Are Associated with a Memory PD-1 ⁺ Phenotype. Journal of Virology, 2016, 90, 4771-4779.	1.5	71
50	An Under-Recognized Influenza Epidemic Identified by Rapid Influenza Testing, Southern Sri Lanka, 2013. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1023-1029.	0.6	11
51	Dengue virus infection elicits highly polarized CX3CR1 ⁺ cytotoxic CD4 ⁺ T cells associated with protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4256-63.	3.3	266
52	Human CD8 ⁺ T-Cell Responses Against the 4 Dengue Virus Serotypes Are Associated With Distinct Patterns of Protein Targets. Journal of Infectious Diseases, 2015, 212, 1743-1751.	1.9	129
53	Use of Rapid Influenza Testing to Reduce Antibiotic Prescriptions Among Outpatients with Influenza-Like Illness in Southern Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1031-1037.	0.6	33
54	The Human CD8 ⁺ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes. Journal of Virology, 2015, 89, 120-128.	1.5	148

#	Article	IF	CITATIONS
55	Preexisting Neutralizing Antibody Responses Distinguish Clinically Inapparent and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort. Journal of Infectious Diseases, 2015, 211, 590-599.	1.9	57
56	Polymorphisms of transporter associated with antigen presentation, tumor necrosis factor-α and interleukin-10 and their implications for protection and susceptibility to severe forms of dengue fever in patients in Sri Lanka. Journal of Global Infectious Diseases, 2015, 7, 157.	0.2	17
57	Preventing ragging: outcome of an integrated programme in a medical faculty in Sri Lanka. Indian Journal of Medical Ethics, 2015, 12, 227-30.	0.2	3
58	Phylogeography and Molecular Epidemiology of an Epidemic Strain of Dengue Virus Type 1 in Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2014, 91, 225-234.	0.6	16
59	Burden of Dengue Infection and Disease in a Pediatric Cohort in Urban Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2014, 91, 132-137.	0.6	35
60	Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2046-53.	3.3	524
61	Estimates of Dengue Force of Infection in Children in Colombo, Sri Lanka. PLoS Neglected Tropical Diseases, 2013, 7, e2259.	1.3	49
62	Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Computational Biology, 2013, 9, e1003266.	1.5	636
63	Insights into HLA-Restricted T Cell Responses in a Novel Mouse Model of Dengue Virus Infection Point toward New Implications for Vaccine Design. Journal of Immunology, 2011, 187, 4268-4279.	0.4	104
64	New Dengue Virus Type 1 Genotype in Colombo, Sri Lanka. Emerging Infectious Diseases, 2011, 17, 2053-5.	2.0	55
65	HLA Class I and Class II Associations in Dengue Viral Infections in a Sri Lankan Population. PLoS ONE, 2011, 6, e20581.	1.1	56
66	Dengue Surveillance in Colombo, Sri Lanka: Baseline seroprevalence among children. Procedia in Vaccinology, 2010, 2, 109-112.	0.4	13
67	5'-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Molecular Microbiology, 2006, 59, 1744-1753.	1.2	102
68	Induction of high levels of protective immunity in mice after vaccination using dendritic cells infected with auxotrophic mutants of Mycobacterium tuberculosis. Immunology Letters, 2006, 103, 196-199.	1.1	4
69	Lipid-protein interactions: Biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1022-1026.	3.3	73
70	Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by Â-D-glucosylceramide synthase deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1849-1854.	3.3	142
71	Lipid Protein Interactions: The Assembly of CD1d1 with Cellular Phospholipids Occurs in the Endoplasmic Reticulum. Journal of Immunology, 2002, 168, 723-733.	0.4	108
72	Natural Ligand of Mouse CD1d1: Cellular Glycosylphosphatidylinositol. Science, 1998, 279, 1541-1544.	6.0	371

#	Article	IF	CITATIONS
73	Distinct Roles for Signals Relayed through the Common Cytokine Receptor γ Chain and Interleukin 7 Receptor α Chain in Natural T Cell Development. Journal of Experimental Medicine, 1997, 186, 331-336.	4.2	48