Aleksandr Bulaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Sources as a Factor Determining the Activity of Microbial Oxidation of Sulfide Concentrate at Elevated Temperature. Minerals (Basel, Switzerland), 2022, 12, 110.	2.0	7
2	Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 2022, 88, AEM0229021.	3.1	6
3	Draft Genome Sequence of Acidiplasma aeolicum Strain V1 ^T , Isolated from a Hydrothermal Pool. Microbiology Resource Announcements, 2022, 11, e0104621.	0.6	0
4	Non-Ferrous Metals and PGM Recovery from Low-Grade Copper–Nickel Concentrate by Bioleaching and Further Cyanidation. Minerals (Basel, Switzerland), 2022, 12, 340.	2.0	4
5	Microorganisms of Microbial Mats from an Alkaline Hot Spring of Baikal Rift Zone as Bioagents in a Biofuel Cell. Geomicrobiology Journal, 2022, 39, 566-576.	2.0	1
6	Continuous Bioleaching of Arsenic-Containing Copper-Zinc Concentrate and Shift of Microbial Population under Various Conditions. Minerals (Basel, Switzerland), 2022, 12, 592.	2.0	5
7	Bioleaching of a Copper-Zinc Concentrate with High Arsenic Content. Microbiology, 2021, 90, 78-86.	1.2	3
8	New trends in biohydrometallurgy. Mining Informational and Analytical Bulletin, 2021, , 56-87.	0.2	0
9	Possibility of Environment-Friendly Hydrometallurgical Treatment of Copper-Zinc Concentrate Containing Arsenic. IOP Conference Series: Earth and Environmental Science, 2021, 666, 032062.	0.3	3
10	Effect of organic nutrients on bioleaching of low-grade copper concentrate at different temperatures. IOP Conference Series: Earth and Environmental Science, 2021, 677, 042076.	0.3	2
11	Unraveling the Central Role of Sulfur-Oxidizing Acidiphilium multivorum LMS in Industrial Bioprocessing of Gold-Bearing Sulfide Concentrates. Microorganisms, 2021, 9, 984.	3.6	12
12	Ferric Leaching of Bulk Sulfidic Concentrates with Biologically Generated Solution. Applied Biochemistry and Microbiology, 2021, 57, 493-499.	0.9	3
13	Biobeneficiation of bulk copper-zinc and copper-nickel concentrates at different temperatures. Minerals Engineering, 2021, 170, 107040.	4.3	6
14	Acidophilic Microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. As a Cathodic Bioagents in a MFC. Geomicrobiology Journal, 2021, 38, 340-346.	2.0	7
15	Effect of Carbon Sources on Pyrite-Arsenopyrite Concentrate Bio-oxidation and Growth of Microbial Population in Stirred Tank Reactors. Microorganisms, 2021, 9, 2350.	3.6	8
16	Pyrrhotite Biooxidation by Moderately Thermophilic Acidophilic Microorganisms. Microbiology, 2020, 89, 510-519.	1.2	1
17	Bioleaching of Enargite and Tennantite by Moderately Thermophilic Acidophilic Microorganisms. Microbiology, 2020, 89, 413-424.	1.2	9
18	Two-stage leaching of copper-zinc concentrate containing tennantite. IOP Conference Series: Earth and Environmental Science, 2020, 548, 062042.	0.3	4

Aleksandr Bulaev

#	Article	IF	CITATIONS
19	Effect of Organic Carbon Source on Pyrite Biooxidation by Moderately Thermophilic Acidophilic Microorganisms. Microbiology, 2020, 89, 301-308.	1.2	12
20	Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. Science of the Total Environment, 2020, 718, 137294.	8.0	18
21	Two-Stage Agitation Leaching of Old Flotation Tailings. Solid State Phenomena, 2019, 298, 116-120.	0.3	1
22	COPPER AND ZINC BIOLEACHING FROM ARSENIC-CONTAINING POLYMETALLIC CONCENTRATE. , 2019, , .		3
23	Biooxidation of persistent gold-bearing ore concentrate of the Bestobe deposit. Obogashchenie Rud, 2019, , 9-14.	0.2	3
24	Effect of Organic Nutrients on the Activity of Archaea of the Ferroplasmaceae Family. Moscow University Biological Sciences Bulletin, 2018, 73, 146-152.	0.7	3
25	Physiological and Morphological Characteristics of Acidophilic Bacteria Leptospirillum ferriphilum and Acidithiobacillus thiooxidans, Members of a Chemolithotrophic Microbial Consortium. Microbiology, 2018, 87, 326-338.	1.2	12
26	Genome analysis of Acidiplasma sp. MBA-1, a polyextremophilic archaeon predominant in the microbial community of a bioleaching reactor. Microbiology, 2017, 86, 89-95.	1.2	7
27	Resistance of Acidiplasma archaea to heavy metal ions. Microbiology, 2017, 86, 583-589.	1.2	7
28	Effect of ferric sulfate on activity of moderately thermophilic acidophilic iron-oxidizing microorganisms. Microbiology, 2017, 86, 469-475.	1.2	1
29	Typing of the closely related strains of euryarchaeal genus Acidiplasma (Thermoplasmatales) using REP-PCR DNA fingerprinting. Microbiology, 2016, 85, 253-256.	1.2	0
30	Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues. Applied Biochemistry and Microbiology, 2016, 52, 397-405.	0.9	4
31	State of development of modern biohydrometallurgical technologies and prospects of their use in Russia. Tsvetnye Metally, 2016, , 29-35.	0.2	1
32	Growth of acidophilic chemolithotrophic microbial communities and sulfur oxidation in the presence of coal ashes. Microbiology, 2015, 84, 177-189.	1.2	11
33	Biooxidation of a double-refractory gold-bearing sulfide ore concentrate. Microbiology, 2015, 84, 636-643.	1.2	3
34	Physiological properties of Acidithiobacillus ferrooxidans strains isolated from sulfide ore deposits in Kazakhstan. Microbiology, 2015, 84, 370-376.	1.2	6
35	Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology, 2015, 84, 194-201.	1.2	27
36	Complete nitrification by Nitrospira bacteria. Nature, 2015, 528, 504-509.	27.8	1,878

Aleksandr Bulaev

#	Article	IF	CITATIONS
37	BIOTECHNOLOGY FOR DECONTAMINATION OF METALLURGICAL SEWAGES. Biotekhnologiya, 2015, , 8-29.	0.1	1
38	Complex treatment of mining and metallurgical wastes for recovery of base metals. Minerals Engineering, 2014, 64, 63-66.	4.3	27
39	Effect of the aeration mode and yeast extract on the oxidation of high-pyrrhotite sulfide ore flotation concentrate and on the composition of the acidophilic chemolithotrophic microbial community. Microbiology, 2014, 83, 558-567.	1.2	1
40	Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation. Minerals Engineering, 2013, 45, 108-114.	4.3	54
41	Selection of a community of acidochemolithotrophic microorganisms with a high oxidation rate of pyrrhotite-containing sulphide ore flotation concentrate. Applied Biochemistry and Microbiology, 2013, 49, 495-501.	0.9	7
42	Enrichment and Genome Sequence of the Group I.1a Ammonia-Oxidizing Archaeon "Ca. Nitrosotenuis uzonensis―Representing a Clade Globally Distributed in Thermal Habitats. PLoS ONE, 2013, 8, e80835.	2.5	84
43	Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities. Applied Biochemistry and Microbiology, 2012, 48, 577-582.	0.9	2
44	Changes in the species composition of a thermotolerant community of acidophilic chemolithotrophic microorganisms upon switching to the oxidation of a new energy substrate. Microbiology, 2012, 81, 391-396.	1.2	6
45	Rates of sulfide mineral oxidation by acidophilic chemolithotrophic microbial communities from various sources. Microbiology, 2012, 81, 397-404.	1.2	8
46	Percolation bioleaching of copper and zinc and gold recovery from flotation tailings of the sulfide complex ores of the Ural region, Russia. Hydrometallurgy, 2012, 111-112, 82-86.	4.3	26
47	Biooxidation of a gold-containing sulfide concentrate in relation to changes in physical and chemical conditions. Microbiology, 2012, 81, 288-298.	1.2	7
48	Two-stage process of bacterial-chemical oxidation of refractory pyrite-arsenopyrite gold-bearing concentrate. Applied Biochemistry and Microbiology, 2011, 47, 833-840.	0.9	7
49	Polymorphism of Sulfobacillus thermosulfidooxidans strains dominating in processes of high-temperature oxidation of gold-arsenic concentrate. Microbiology, 2011, 80, 326-334.	1.2	9
50	Species composition of the association of acidophilic chemolithotrophic microorganisms participating in the oxidation of gold-arsenic ore concentrate. Microbiology, 2011, 80, 842-849.	1.2	15
51	Identification of the dominant bacterium of two-stage biooxidation of gold-arsenic concentrate. Microbiology, 2010, 79, 342-348.	1.2	4
52	A Two-Step Process for the Treatment of Refractory Sulphidic Concentrate. Advanced Materials Research, 0, 825, 246-249.	0.3	9
53	Bioprocessing of Mining and Metallurgical Wastes Containing Non-Ferrous and Precious Metals. Advanced Materials Research, 0, 825, 301-304.	0.3	8
54	Selective Acid Leaching of Copper and Zinc from Old Flotation Tailings. Materials Science Forum, 0, 989, 554-558.	0.3	1

#	Article	IF	CITATIONS
55	Bioleaching of Non-Ferrous Metals from Arsenic-Bearing Sulfide Concentrate. Solid State Phenomena, 0, 299, 1064-1068.	0.3	13