Chi-Yang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396095/publications.pdf

Version: 2024-02-01

346980 355658 1,811 37 22 38 h-index citations g-index papers 38 38 38 2364 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chitosan-covalent organic framework dual-layer membrane with high efficiency of iodine capture. Cellulose, 2022, 29, 2553-2563.	2.4	8
2	Recent advances and applications of molecularly imprinted polymers in solidâ€phase extraction for real sample analysis. Journal of Separation Science, 2021, 44, 274-309.	1.3	65
3	Highly dispersed silver nanoparticles confined in a nitrogen-containing covalent organic framework for 4-nitrophenol reduction. Materials Chemistry Frontiers, 2021, 5, 6923-6930.	3.2	13
4	Thiol/methylthio-functionalized porous aromatic frameworks for simultaneous capture of aromatic pollutants and Hg(II) from water. Journal of Hazardous Materials, 2021, 418, 126244.	6.5	15
5	Application of nanomaterials decorated with cyclodextrins as sensing elements for environment analysis. Environmental Science and Pollution Research, 2021, 28, 59499-59518.	2.7	4
6	Multi-optical signal channel gold nanoclusters and their application in heavy metal ions sensing arrays. Journal of Materials Chemistry C, 2021, 9, 2833-2839.	2.7	9
7	Novel magnetic pillar[5]arene polymer as adsorbent for rapid removal of organic pollutants in water or air. Microchemical Journal, 2020, 153, 104524.	2.3	13
8	Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture. Cellulose, 2020, 27, 1517-1529.	2.4	37
9	Novel thiol-functionalized covalent organic framework as adsorbent for simultaneous removal of BTEX and mercury (II) from water. Chemical Engineering Journal, 2020, 398, 125566.	6.6	69
10	Thiol-/thioether-functionalized porous organic polymers for simultaneous removal of mercury(<scp>ii</scp>) ion and aromatic pollutants in water. New Journal of Chemistry, 2019, 43, 7683-7693.	1.4	34
11	Novel porous \hat{l}^2 -cyclodextrin/pillar[5]arene copolymer for rapid removal of organic pollutants from water. Carbohydrate Polymers, 2019, 216, 149-156.	5.1	41
12	Advances in Cellulose-Based Sorbents for Extraction of Pollutants in Environmental Samples. Chromatographia, 2019, 82, 1151-1169.	0.7	25
13	Fabrication of pillar[5]arene-polymer-functionalized cotton fibers as adsorbents for adsorption of organic pollutants in water and volatile organic compounds in air. Cellulose, 2019, 26, 3299-3312.	2.4	17
14	Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Analytica Chimica Acta, 2019, 1046, 48-68.	2.6	70
15	Simultaneous Solid-Phase Extraction and Determination of Three Bisphenols in Water Samples and Orange Juice by a Porous β-Cyclodextrin Polymer. Food Analytical Methods, 2018, 11, 1476-1484.	1.3	25
16	Novel microporous \hat{l}^2 -cyclodextrin polymer as sorbent for solid-phase extraction of bisphenols in water samples and orange juice. Talanta, 2018, 187, 207-215.	2.9	53
17	Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light. Journal of Environmental Chemical Engineering, 2018, 6, 59-67.	3.3	57
18	Photocatalytic activity of π-conjugated conducting polymer microspheres from ultrasonic spray pyrolysis. High Performance Polymers, 2017, 29, 616-621.	0.8	4

#	Article	IF	CITATIONS
19	Quartz-Wool-Supported Surface Dummy Molecularly Imprinted Silica as a Novel Solid-Phase Extraction Sorbent for Determination of Bisphenol A in Water Samples and Orange Juice. Food Analytical Methods, 2017, 10, 1922-1930.	1.3	6
20	Synthesis, characterization, and hydrolytic degradation of polylactide/poly(ϵ-caprolactone)/nano-silica composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 813-818.	1.2	4
21	Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta, 2017, 162, 57-64.	2.9	100
22	Amorphous NiB/carbon nanohybrids: synthesis and catalytic enhancement induced by electron transfer. RSC Advances, 2016, 6, 94451-94458.	1.7	13
23	Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta, 2016, 148, 29-36.	2.9	69
24	Molecularly Imprinted TiO2/WO3-Coated Magnetic Nanocomposite for Photocatalytic Degradation of 4-Nitrophenol Under Visible Light. Australian Journal of Chemistry, 2016, 69, 638.	0.5	6
25	Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A. Journal of Chromatography A, 2015, 1396, 17-24.	1.8	46
26	Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions. Journal of Hazardous Materials, 2015, 294, 168-176.	6.5	88
27	Integrated Bare Narrow Capillary–Hydrodynamic Chromatographic System for Freeâ€Solution DNA Separation at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2013, 52, 5612-5616.	7.2	15
28	Miniaturized Electroosmotic Pump Capable of Generating Pressures of More than 1200 Bar. Analytical Chemistry, 2012, 84, 9609-9614.	3.2	44
29	Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations. Journal of Chromatography A, 2012, 1227, 253-258.	1.8	19
30	Flow Batteries for Microfluidic Networks: Configuring An Electroosmotic Pump for Nonterminal Positions. Analytical Chemistry, 2011, 83, 2430-2433.	3.2	24
31	Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone. Talanta, 2008, 74, 1126-1131.	2.9	64
32	A method for coating colloidal particles with molecularly imprinted silica films. Journal of Materials Chemistry, 2008, 18, 2849.	6.7	27
33	Hierarchically imprinted organic–inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution. Analytica Chimica Acta, 2007, 582, 304-310.	2.6	86
34	Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. Journal of Proteomics, 2007, 70, 133-150.	2.4	335
35	Molecularly Imprinted Polymer Film Grafted from Porous Silica for Selective Recognition of Testosterone. Analytical Letters, 2006, 39, 275-286.	1.0	27
36	Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. Journal of Chromatography A, 2005, 1082, 143-149.	1.8	264

#	Article	lF	CITATIONS
37	Study on PEGâ€(NH ₄) ₂ SO ₄ aqueous twoâ€phase system and distribution behavior of drugs. Chinese Journal of Chemistry, 2004, 22, 1313-1318.	2.6	14