Pier Luca Maffettone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395922/publications.pdf

Version: 2024-02-01

186 papers 5,294 citations

36 h-index 65 g-index

190 all docs 190 docs citations

190 times ranked 3350 citing authors

#	Article	IF	Citations
1	A description of the liquid-crystalline phase of rodlike polymers at high shear rates. Macromolecules, 1989, 22, 4076-4082.	2.2	313
2	Equation of change for ellipsoidal drops in viscous flow. Journal of Non-Newtonian Fluid Mechanics, 1998, 78, 227-241.	1.0	293
3	Quantifying dispersion of layered nanocomposites via melt rheology. Journal of Rheology, 2007, 51, 429-450.	1.3	232
4	Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab on A Chip, 2012, 12, 1638.	3.1	182
5	Particle Migration due to Viscoelasticity of the Suspending Liquid and Its Relevance in Microfluidic Devices. Annual Review of Fluid Mechanics, 2017, 49, 341-360.	10.8	181
6	Microrheological Modeling of Flow-Induced Crystallization. Macromolecules, 2001, 34, 5030-5036.	2.2	157
7	Particle dynamics in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2015, 215, 80-104.	1.0	153
8	Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab on A Chip, 2013, 13, 4263.	3.1	98
9	Viscoelasticity-induced migration of a rigid sphere in confined shear flow. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 466-474.	1.0	96
10	Particle motion in square channel flow of a viscoelastic liquid: Migration vs. secondary flows. Journal of Non-Newtonian Fluid Mechanics, 2013, 195, 1-8.	1.0	96
11	Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab on A Chip, 2013, 13, 2802.	3.1	88
12	Nematic phase of rodlike polymers. I. Prediction of transient behavior at high shear rates. Journal of Rheology, 1990, 34, 1217-1230.	1.3	85
13	Effects of the degree of undercooling on flow induced crystallization in polymer melts. Polymer, 2004, 45, 3249-3256.	1.8	83
14	Full-angle tomographic phase microscopy of flowing quasi-spherical cells. Lab on A Chip, 2018, 18, 126-131.	3.1	83
15	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results. Journal of Rheology, 2008, 52, 1331-1346.	1.3	77
16	Continuum theory for nematic liquid crystals with tensorial order. Journal of Non-Newtonian Fluid Mechanics, 2004, 119, 51-59.	1.0	71
17	Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions †at a glanceâ€. Scientific Reports, 2015, 5, 8831.	1.6	71
18	Perspectives on liquid biopsy for labelâ€free detection of "circulating tumor cells―through intelligent labâ€onâ€chips. View, 2020, 1, 20200034.	2.7	69

#	Article	IF	CITATIONS
19	Prediction of Chaotic Dynamics in Sheared Liquid Crystalline Polymers. Physical Review Letters, 2001, 86, 3184-3187.	2.9	68
20	Ellipsoidal drop model for single drop dynamics with non-Newtonian fluids. Journal of Rheology, 2004, 48, 83-100.	1.3	68
21	Fourier Transform Rheology of Dilute Immiscible Polymer Blends: A Novel Procedure To Probe Blend Morphology. Macromolecules, 2008, 41, 4492-4500.	2.2	65
22	Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab on A Chip, 2015, 15, 783-792.	3.1	64
23	Simulations of deformable systems in fluids under shear flow using an arbitrary Lagrangian Eulerian technique. Computers and Fluids, 2014, 90, 88-100.	1.3	58
24	Effect of viscoelasticity on the rotation of a sphere in shear flow. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 363-372.	1.0	57
25	Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluidics and Nanofluidics, 2015, 19, 95-104.	1.0	57
26	Magnetophoresis â€~meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab on A Chip, 2015, 15, 1912-1922.	3.1	56
27	Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1396-1405.	1.0	54
28	Drop shape dynamics under shear-flow reversal. Journal of Rheology, 2000, 44, 1385-1399.	1.3	53
29	Nanocomposite UV-cured coatings: Organoclay intercalation by an epoxy resin. Progress in Organic Coatings, 2008, 63, 110-115.	1.9	52
30	Numerical simulations of particle migration in a viscoelastic fluid subjected to shear flow. Computers and Fluids, 2010, 39, 709-721.	1.3	51
31	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part II. Experimental results. Journal of Rheology, 2009, 53, 459-480.	1.3	50
32	Rheology and rheological morphology determination in immiscible two-phase polymer model blends. Journal of Non-Newtonian Fluid Mechanics, 2000, 93, 153-165.	1.0	44
33	Dynamic characterization of liquid crystalline polymers under flowâ€aligning shear conditions. Journal of Chemical Physics, 1994, 100, 7736-7743.	1.2	42
34	Rheology of a dilute suspension of rigid spheres in a second order fluid. Journal of Non-Newtonian Fluid Mechanics, 2007, 147, 1-10.	1.0	41
35	Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. Rheologica Acta, 2019, 58, 109-130.	1.1	41
36	Fluid Viscoelasticity Drives Self-Assembly of Particle Trains in a Straight Microfluidic Channel. Physical Review Applied, 2018, 10, .	1.5	38

3

#	Article	IF	Citations
37	Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Physical Review E, 2014, 89, 043006.	0.8	36
38	Hydrodynamics and Brownian motions of a spheroid near a rigid wall. Journal of Chemical Physics, 2015, 142, 194901.	1.2	36
39	Numerical simulations of deformable particle lateral migration in tube flow of Newtonian and viscoelastic media. Journal of Non-Newtonian Fluid Mechanics, 2016, 234, 105-113.	1.0	36
40	Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations. Journal of Rheology, 2013, 57, 813-839.	1.3	35
41	Combining Catalytic Combustion and Steam Reforming in a Novel Multifunctional Reactor for On-Board Hydrogen Production from Middle Distillates. Industrial & Engineering Chemistry Research, 2005, 44, 9422-9430.	1.8	33
42	Rheology of dilute and semidilute noncolloidal hard sphere suspensions. Journal of Rheology, 2008, 52, 1369-1384.	1.3	33
43	Relaxation time of polyelectrolyte solutions: When $\langle i \rangle \hat{l} \frac{1}{4} \langle i \rangle$ -rheometry steps in charge. Journal of Rheology, 2017, 61, 13-21.	1.3	33
44	Rheology of carbon nanofiber-reinforced polypropylene. Rheologica Acta, 2008, 47, 425-433.	1.1	32
45	Bifurcation analysis of a molecular model for nematic polymers in shear flows. Journal of Non-Newtonian Fluid Mechanics, 1995, 59, 73-91.	1.0	31
46	Symmetry properties and bifurcation analysis of a class of periodically forced chemical reactors. Chemical Engineering Science, 2002, 57, 5065-5082.	1.9	31
47	Numerical simulations of particle migration in a viscoelastic fluid subjected to Poiseuille flow. Computers and Fluids, 2011, 42, 82-91.	1.3	31
48	CFD-DEM simulations of particulate fouling in microchannels. Chemical Engineering Journal, 2019, 358, 91-100.	6.6	31
49	Coupling between kinetics and rheological parameters in the flow-induced crystallization of thermoplastic polymers. Macromolecular Symposia, 2002, 185, 233-241.	0.4	30
50	A closure approximation for nematic liquid crystals based on the canonical distribution subspace theory. Rheologica Acta, 2000, 39, 301-310.	1.1	29
51	Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 2008, 150, 65-79.	1.0	29
52	Migration of a sphere in a viscoelastic fluid under planar shear flow: Experiments and numerical predictions. Soft Matter, 2011, 7, 1100-1106.	1.2	29
53	The effect of shear flow on microreactor clogging. Chemical Engineering Journal, 2018, 341, 639-647.	6.6	29
54	Multistability and hysteresis in an industrial ammonia reactor. AICHE Journal, 2000, 46, 824-828.	1.8	28

#	Article	IF	Citations
55	Effects of confinement on the motion of a single sphere in a sheared viscoelastic liquid. Journal of Non-Newtonian Fluid Mechanics, 2009, 157, 101-107.	1.0	28
56	Metal-Enhanced Fluorescence Immunosensor Based on Plasmonic Arrays of Gold Nanoislands on an Etched Glass Substrate. ACS Applied Nano Materials, 2020, 3, 10470-10478.	2.4	28
57	Newtonian drop in a Newtonian matrix subjected to large amplitude oscillatory shear flows. Rheologica Acta, 2004, 43, 575-583.	1.1	27
58	Simulations of an elastic particle in Newtonian and viscoelastic fluids subjected to confined shear flow. Journal of Non-Newtonian Fluid Mechanics, 2014, 210, 47-55.	1.0	27
59	Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel. Journal of Non-Newtonian Fluid Mechanics, 2019, 263, 33-41.	1.0	27
60	Complex dynamics and spatio-temporal patterns in a network of three distributed chemical reactors with periodical feed switching. Chaos, Solitons and Fractals, 2006, 28, 682-706.	2.5	26
61	Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel. Computers and Fluids, 2013, 86, 45-55.	1.3	26
62	Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Computers and Fluids, 2015, 107, 214-223.	1.3	26
63	Quantitative imaging of the complexity in liquid bubbles' evolution reveals the dynamics of film retraction. Light: Science and Applications, 2019, 8, 20.	7.7	26
64	Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 134, 27-32.	1.0	25
65	Optimizing design and fabrication of microfluidic devices for cell cultures: An effective approach to control cell microenvironment in three dimensions. Biomicrofluidics, 2014, 8, 046503.	1.2	25
66	Analysis of dynamic mechanical response in torsion. Journal of Rheology, 2016, 60, 275-287.	1.3	25
67	A two-dimensional approach to the constitutive equation of nematic polymers. Journal of Non-Newtonian Fluid Mechanics, 1991, 38, 273-288.	1.0	24
68	Extensional Flow of a Two-Dimensional Polymer Liquid Crystal. Macromolecules, 1996, 29, 8473-8478.	2.2	24
69	A model of the dynamics of a fluidized bed combustor burning biomass. Combustion and Flame, 2005, 140, 371-384.	2.8	24
70	Migration of a sphere suspended in viscoelastic liquids in Couette flow: experiments and simulations. Rheologica Acta, 2012, 51, 215-234.	1.1	24
71	Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations. Journal of Non-Newtonian Fluid Mechanics, 2014, 203, 1-8.	1.0	24
72	Elasticity in Bubble Rupture. Langmuir, 2018, 34, 5646-5654.	1.6	24

#	Article	IF	Citations
73	Microfluidic formation of crystal-like structures. Lab on A Chip, 2021, 21, 2069-2094.	3.1	24
74	Band formation in HPC solutions by consecutive shears along orthogonal directions. Liquid Crystals, 1989, 4, 385-391.	0.9	23
75	Nonlinear dynamics of a VOC combustion loop reactor. AICHE Journal, 2006, 52, 2812-2822.	1.8	22
76	Bifurcational and dynamical analysis of a continuous biofilm reactor. Journal of Biotechnology, 2008, 135, 295-303.	1.9	21
77	Modelling and simulation of a catalytic autothermal methane reformer with Rh catalyst. International Journal of Hydrogen Energy, 2012, 37, 263-275.	3.8	21
78	Dehydration of plant cells shoves nuclei rotation allowing for 3D phase-contrast tomography. Light: Science and Applications, 2021, 10, 187.	7.7	21
79	The rigid rod model for nematic polymers: Testing closure approximations with bifurcation analysis. Journal of Rheology, 1994, 38, 1559-1570.	1.3	20
80	A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid. Journal of Computational Physics, 2007, 226, 688-711.	1.9	20
81	Microfluidic Lagrangian Trap for Brownian Particles: Three-Dimensional Focusing down to the Nanoscale. Physical Review Applied, 2014, 2, .	1.5	20
82	Multi-graded foams upon time-dependent exposition to blowing agent. Chemical Engineering Journal, 2019, 362, 812-817.	6.6	20
83	Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel. Meccanica, 2020, 55, 317-330.	1.2	19
84	Shear-induced biaxiality in nematic polymers. Journal of Non-Newtonian Fluid Mechanics, 2000, 90, 283-297.	1.0	17
85	Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes. Journal of Computational Physics, 2016, 316, 632-651.	1.9	17
86	Modeling Temperature Profiles of a Catalytic Autothermal Methane Reformer with Nickel Catalyst. Industrial & Description of the Mickel Catalyst.	1.8	16
87	Full-Field and Quantitative Analysis of a Thin Liquid Film at the Nanoscale by Combining Digital Holography and White Light Interferometry. Journal of Physical Chemistry C, 2021, 125, 1075-1086.	1.5	16
88	Analysis of start-up dynamics of a single drop through an ellipsoidal drop model for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 2005, 126, 145-151.	1.0	15
89	Effect of the Switch Strategy on the Stability of Reactor Networks. Industrial & Engineering Chemistry Research, 2007, 46, 6510-6521.	1.8	15
90	A new methodology for the estimation of drop size distributions of dilute polymer blends based on LAOS flows. Journal of Non-Newtonian Fluid Mechanics, 2007, 143, 48-58.	1.0	15

#	Article	IF	Citations
91	Is microrheometry affected by channel deformation?. Biomicrofluidics, 2016, 10, 043501.	1.2	15
92	Numerical investigation of hard-gel microparticle suspension dynamics in microfluidic channels: Aggregation/fragmentation phenomena, and incipient clogging. Chemical Engineering Journal, 2016, 303, 202-216.	6.6	15
93	Flowering in bursting bubbles with viscoelastic interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
94	A microcapillary rheometer for microliter sized polymer characterization. Polymer Testing, 2021, 102, 107332.	2.3	15
95	Experimental Study and Numerical Investigation of the Phenomena Occurring During Long Duration Cold Spray Deposition. International Review on Modelling and Simulations, 2018, 11, 84.	0.2	15
96	Continuous 3D Printing of Hierarchically Structured Microfoamed Objects. Advanced Engineering Materials, 2022, 24, 2101226.	1.6	15
97	The dynamics of two dimensional polymer nematics1Dedicated to the memory of Professor Gianni Astarita1. Journal of Non-Newtonian Fluid Mechanics, 1998, 76, 233-247.	1.0	14
98	Non-linear dynamics of a self-igniting reaction–diffusion system. Chemical Engineering Science, 2000, 55, 303-309.	1.9	14
99	Stress Tensor of a Dilute Suspension of Spheres in a Viscoelastic Liquid. Physical Review Letters, 2005, 95, 246001.	2.9	14
100	Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of a Methanol Reformer for Automotive Applications. Industrial & Dynamics of Applications of Applicat	1.8	14
101	Assembling and rotating erythrocyte aggregates by acoustofluidic pressure enabling full phase-contrast tomography. Lab on A Chip, 2019, 19, 3123-3132.	3.1	14
102	Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. Soft Matter, 2019, 15, 880-889.	1.2	14
103	Numerical simulations on the dynamics of a particle pair in a viscoelastic fluid in a microchannel: effect of rheology, particle shape, and confinement. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	14
104	Numerical simulations of the dynamics of a slippery particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 228, 46-54.	1.0	13
105	Numerical simulation of clogging in a microchannel with planar contraction. Physics of Fluids, 2021, 33, .	1.6	13
106	Digital holography as metrology tool at micro-nanoscale for soft matter. Light Advanced Manufacturing, 2022, 3, 151.	2.2	13
107	A constitutive equation for monodomains of nematic polymers. Journal of Non-Newtonian Fluid Mechanics, 1992, 45, 339-354.	1.0	12
108	NONLINEAR ANALYSIS OF A NETWORK OF THREE CONTINUOUS STIRRED TANK REACTORS WITH PERIODIC FEED SWITCHING: SYMMETRY AND SYMMETRY-BREAKING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 1325-1341.	0.7	12

#	Article	IF	Citations
109	Slit devolatilization of polymers. AICHE Journal, 1991, 37, 724-734.	1.8	11
110	Flow of nematic polymers in eccentric cylinder geometry: influence of closure approximations. Journal of Non-Newtonian Fluid Mechanics, 2000, 94, 119-134.	1.0	11
111	Quiescent and flow-induced transitional behavior of hydroxypropylcellulose solutions. Journal of Chemical Physics, 2003, 118, 5195-5200.	1.2	11
112	Rheology of a dilute viscoelastic suspension of spheroids in unconfined shear flow. Rheologica Acta, 2015, 54, 915-928.	1.1	11
113	Numerical simulations of a stick-slip spherical particle in Poiseuille flow. Physics of Fluids, 2019, 31, 083603.	1.6	11
114	Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules, 2022, 55, 5017-5026.	2.2	11
115	Short-term ursodeoxycholic acid treatment improves gallbladder bile turnover in gallstone patients: a randomized trial Neurogastroenterology and Motility 2005, 171680-686 A critical appraisal of the ammi:math altimg=si36.gil display=inline overflow="scroll"	1.6	10
116	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.9	10
117	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www. Chemical Fingle On the choice of the optimal periodic operation for a continuous fermentation process. Biotechnology Progress, 2010, 26, 1580-1589.	1.3	10
118	Decoupled transient schemes for viscoelastic fluid flow with inertia. Computers and Fluids, 2012, 66, 183-193.	1.3	10
119	Modeling and simulation of viscoelastic film retraction. Journal of Non-Newtonian Fluid Mechanics, 2017, 249, 26-35.	1.0	10
120	Numerical design of a T-shaped microfluidic device for deformability-based separation of elastic capsules and soft beads. Physical Review E, 2017, 96, 053103.	0.8	10
121	Hindered Brownian diffusion in a square-shaped geometry. Journal of Colloid and Interface Science, 2015, 447, 25-32.	5.0	9
122	Three-dimensional computational fluid dynamics simulation of the hollow-cone spray process: The stability of the conical liquid sheet. Physics of Fluids, 2021, 33, .	1.6	9
123	Single Drop Dynamics under Shearing Flow in Systems with a Viscoelastic Phase. Macromolecular Symposia, 2005, 228, 31-40.	0.4	8
124	Morphology estimation from normal stress measurements for dilute immiscible polymer blends. Rheologica Acta, 2003, 42, 158-165.	1.1	7
125	Separation of particles in non-Newtonian fluids flowing in T-shaped microchannels. Advanced Modeling and Simulation in Engineering Sciences, 2015, 2, .	0.7	7
126	Characteriation of chaotic dynamics in the spontaneous combustion of coal stockpiles. Proceedings of the Combustion Institute, 1996, 26, 1585-1592.	0.3	6

#	Article	IF	CITATIONS
127	Computational simulations of 3D large-scale time-dependent viscoelastic flows in high performance computing environment. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1382-1395.	1.0	6
128	The effect of wall slip on the dynamics of a spherical particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 123-131.	1.0	6
129	Numerical simulations of the separation of elastic particles in a T-shaped bifurcation. Journal of Non-Newtonian Fluid Mechanics, 2016, 233, 75-84.	1.0	6
130	Effect of pH on the viscoelastic properties of pig gastric mucus. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 195-199.	1.5	6
131	Dissolution of concentrated surfactant solutions: from microscopy imaging to rheological measurements through numerical simulations. Soft Matter, 2019, 15, 8352-8360.	1.2	6
132	Axisymmetric bare freestanding films of highly viscous liquids: Preparation and real-time investigation of capillary leveling. Journal of Colloid and Interface Science, 2021, 596, 493-499.	5.0	6
133	DEVOLATILIZATION OF POLYMERS., 1993,, 419-444.		5
134	Nonlinear Analysis of Substrate-Inhibited Continuous Cultures Operated with Feedback Control on Dissolved Oxygen. Industrial & Engineering Chemistry Research, 2013, 52, 13422-13431.	1.8	5
135	Numerical simulations of viscoelastic film stretching and retraction. Journal of Non-Newtonian Fluid Mechanics, 2019, 266, 118-126.	1.0	5
136	Stability of multislit devolatilization of polymers. AICHE Journal, 1993, 39, 140-148.	1.8	4
137	Nonlinear dynamics of a concentrated system of rigid rods subjected to periodic shear flow. Journal of Rheology, 2003, 47, 129-141.	1.3	4
138	Nonlinear Analysis of Heterogeneous Model for an Industrial Ammonia Reactor. Chemical Product and Process Modeling, 2009, 4, .	0.5	4
139	Temperature wave trains of the loop reactor: The effect of thermal dispersion. Chemical Engineering Science, 2012, 76, 108-119.	1.9	4
140	Numerical simulations of linear viscoelasticity of monodisperse emulsions of Newtonian drops in a Newtonian fluid from dilute to concentrated regime. Rheologica Acta, 2014, 53, 401-416.	1.1	4
141	Granular flow in rotating drums through simulations adopting a continuum constitutive equation. Physics of Fluids, 2020, 32, 093305.	1.6	4
142	Polymer devolatilization: State of the art. Makromolekulare Chemie Macromolecular Symposia, 1993, 68, 1-12.	0.6	3
143	Nonlinear analysis of an industrial ammonia reactor with heterogeneous model. Computer Aided Chemical Engineering, 2001, 9, 225-230.	0.3	2
144	Rheology of a Dilute Suspension of Spheres in a Viscoelastic Fluid Under Large Amplitude Oscillations. Journal of Computational and Theoretical Nanoscience, 2010, 7, 780-786.	0.4	2

#	Article	lF	Citations
145	iPP Crystallization: Micro and Nano Fillers Effects. , 2010, , .		2
146	Interferometric measurement of film thickness during bubble blowing., 2017,,.		2
147	3D imaging in microfluidics: new holographic methods and devices. , 2019, , .		2
148	CFD-DEM Modelling: Clogging of Triplet Particles in a Microchannel With a Constriction. , 2021, , .		2
149	An Experimental and Numerical Investigation on Bubble Growth in Polymeric Foams. Entropy, 2022, 24, 183.	1.1	2
150	Effect of wall slip on the viscoelastic particle ordering in a microfluidic channel. Electrophoresis, 2022, 43, 2206-2216.	1.3	2
151	Interactions between flow and superstructure of liquid crystalline polymers. Macromolecular Symposia, 1997, 124, 49-57.	0.4	1
152	A laboratory spiral disk extruder for flow visualization. Polymer Engineering and Science, 2000, 40, 2262-2271.	1.5	1
153	Numerical simulations of dispersive mixing of viscoelastic suspensions in a four-roll mill. Rheologica Acta, 2017, 56, 695-706.	1.1	1
154	Fast and Accurate Thickness Mapping of Liquid Bubbles and Thin Protein Films. , 2018, , .		1
155	Biocompatible micro-needles for smart therapy. , 2021, , .		1
156	POLYMER DEVOLATILIZATION: HOW IMPORTANT IS RHEOLOGY?., 1992,, 366-368.		1
157	Thin-film drainage study based on holographic 3D particle tracking. , 2018, , .		1
158	Tomographic flow cytometry of circulating human breast adenocarcinoma cells. , 2018, , .		1
159	Recent Advancements and Perspective About Digital Holography: A Super-Tool in Biomedical and Bioengineering Fields. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 235-241.	0.3	1
160	Engineering problem involving diophantine algebra. AICHE Journal, 1996, 42, 3296-3299.	1.8	0
161	Non linear dynamics of a network of reactors with periodical feed switching. Computer Aided Chemical Engineering, 2002, 10, 535-540.	0.3	0
162	Effect of short-time treatment with ursodeoxycholic acid on postprandial gallbladder bile flow in gallstone patients: a statistical-mathematical analysis of ultrasonographic data. Gastroenterology, 2003, 124, A247.	0.6	0

#	Article	IF	CITATIONS
163	4th Annual European Rheology Conference (AERC 2007) Naples, Italy, 12–14 April 2007. Rheologica Acta, 2008, 47, 477-477.	1.1	0
164	Rotation of a Sphere in a Viscoelastic Fluid under Flow. AIP Conference Proceedings, 2008, , .	0.3	0
165	Determination of the optimal periodic waveform for a continuous fermentation process. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 305-310.	0.4	0
166	Fast and Accurate Thickness Mapping of Thin Liquid Films. EPJ Web of Conferences, 2019, 215, 12002.	0.1	0
167	Microfluidic engineering for continuous in-flow cyto-tomography. EPJ Web of Conferences, 2019, 215, 10003.	0.1	0
168	Quantitative thickness mapping of a freestanding thin liquid film by fusing digital holography and white light interferometry. , 2021, , .		0
169	Tomographic flow cytometry as the key-enabling technology for label-free liquid biopsy. , 2021, , .		0
170	SensApp: a FET-open project for developing a supersensor able to detect Alzheimer's disease biomarkers in blood., 2021,,.		0
171	10.1063/5.0051309.1., 2021, , .		0
172	Design of a microfluidic device for the phase-contrast tomography of flowing cells. , 2021, , .		0
173	Investigation of plant cells intracellular dynamics by digital holography., 2021,,.		0
174	A remote foaming experiment. Education for Chemical Engineers, 2021, 36, 171-175.	2.8	0
175	Holographic phase imaging for full-field thickness mapping of evolving thin liquid films. , 2018, , .		0
176	Methods for holographic 3D tracking and rotating angle recovery in tomographic flow cytometry. , 2019, , .		0
177	Holographic Imaging for 3D Visualization and Metrology of Liquid Bubbles. , 2019, , .		0
178	3D thin liquid films full-field measurement. , 2019, , .		0
179	Label-free imaging of cancer cells by in-flow tomography. , 2019, , .		0
180	Phase contrast imaging in acoustophoresis platforms for biological applications. , 2019, , .		0

#	Article	lF	CITATIONS
181	Holographic imaging of erythrocytes in acoustofluidic platforms. , 2019, , .		O
182	Design of an optofluidic device for the measurement of the elastic modulus of deformable particles. , $2019, \dots$		0
183	Holographic imaging for 3D cells morphology in microfluidic flow. , 2019, , .		0
184	Complementary characteristics of Digital Holography and White Light Interferometry allow quantitative study of thin liquid film. , 2020, , .		0
185	Induced dehydration as a method to enhance phase-contrast observation of plant cells intracellular dynamics. , 2021, , .		O
186	Rheo-Engineered Microfluidics @ UNINA. , 2022, 3, 100024.		0