Charlotte Kuperwasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395904/publications.pdf

Version: 2024-02-01

74 papers

11,891 citations

57758 44 h-index 79698 73 g-index

75 all docs

75 docs citations

75 times ranked 17182 citing authors

#	Article	IF	CITATIONS
1	Detection of Occult Recurrence Using Circulating Tumor Tissue Modified Viral HPV DNA among Patients Treated for HPV-Driven Oropharyngeal Carcinoma. Clinical Cancer Research, 2022, 28, 4292-4301.	7.0	45
2	Evolving barcodes shed light into evolving metastases. Developmental Cell, 2021, 56, 1077-1079.	7.0	1
3	Microenvironmental control of cell fate decisions in mammary gland development and cancer. Developmental Cell, 2021, 56, 1875-1883.	7.0	12
4	Breast tissue regeneration is driven by cell-matrix interactions coordinating multi-lineage stem cell differentiation through DDR1. Nature Communications, 2021, 12, 7116.	12.8	10
5	Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Reports, 2019, 28, 394-407.e6.	6.4	30
6	Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing. Cell Reports, 2019, 28, 3435-3449.e5.	6.4	32
7	Molecular regulation of Snai2 in development and disease. Journal of Cell Science, 2019, 132, .	2.0	71
8	Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019, 24, 65-78.	11.1	399
9	BCL11B Drives Human Mammary Stem Cell Self-Renewal InÂVitro by Inhibiting Basal Differentiation. Stem Cell Reports, 2018, 10, 1131-1145.	4.8	9
10	Premature polyadenylation of MAGI3 is associated with diminished N6-methyladenosine in its large internal exon. Scientific Reports, 2018, 8, 1415.	3.3	17
11	Mechanisms of HERV-K (HML-2) Transcription during Human Mammary Epithelial Cell Transformation. Journal of Virology, 2018, 92, .	3.4	33
12	Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology, 2018, 15, 57.	2.0	33
13	Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials, 2017, 116, 34-47.	11.4	55
14	Loss of RasGAP Tumor Suppressors Underlies the Aggressive Nature of Luminal B Breast Cancers. Cancer Discovery, 2017, 7, 202-217.	9.4	57
15	Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L. Stem Cell Reports, 2017, 9, 943-955.	4.8	16
16	Extracellular superoxide dismutase inhibits hepatocyte growth factor-mediated breast cancer-fibroblast interactions. Oncotarget, 2017, 8, 107390-107408.	1.8	6
17	Cell Fate Decisions During Breast Cancer Development. Journal of Developmental Biology, 2016, 4, 4.	1.7	22
18	The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Research, 2016, 18, 14.	5.0	51

#	Article	IF	CITATIONS
19	The SIRT2 Deacetylase Stabilizes Slug to Control Malignancy of Basal-like Breast Cancer. Cell Reports, 2016, 17, 1302-1317.	6.4	85
20	BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle, 2016, 15, 621-627.	2.6	22
21	Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer. ELife, 2016, 5, .	6.0	20
22	CoREST1 Promotes Tumor Formation and Tumor Stroma Interactions in a Mouse Model of Breast Cancer. PLoS ONE, 2015, 10, e0121281.	2.5	7
23	Ultra-sensitive protein detection via Single Molecule Arrays towards early stage cancer monitoring. Scientific Reports, 2015, 5, 11034.	3.3	43
24	Form and Function: how Estrogen and Progesterone Regulate the Mammary Epithelial Hierarchy. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 9-25.	2.7	100
25	Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nature Communications, 2015, 6, 7505.	12.8	101
26	Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomedical Optics Express, 2015, 6, 2294.	2.9	52
27	Working stiff: How obesity boosts cancer risk. Science Translational Medicine, 2015, 7, 301fs34.	12.4	13
28	Humanization of the Mouse Mammary Gland. Methods in Molecular Biology, 2015, 1293, 173-186.	0.9	7
29	Human Breast Progenitor Cell Numbers Are Regulated by WNT and TBX3. PLoS ONE, 2014, 9, e111442.	2.5	18
30	SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhesion and Migration, 2014, 8, 578-587.	2.7	108
31	Anatomical localization of progenitor cells in human breast tissue reveals enrichment of uncommitted cells within immature lobules. Breast Cancer Research, 2014, 16, 453.	5.0	26
32	NDY1/KDM2B Functions as a Master Regulator of Polycomb Complexes and Controls Self-Renewal of Breast Cancer Stem Cells. Cancer Research, 2014, 74, 3935-3946.	0.9	79
33	Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation. Stem Cell Reports, 2014, 2, 633-647.	4.8	85
34	The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment. Cell Reports, 2014, 6, 1059-1072.	6.4	139
35	Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation. Breast Cancer Research, 2014, 16, R2.	5.0	26
36	The RasGAP Gene, RASAL2, Is a Tumor and Metastasis Suppressor. Cancer Cell, 2013, 24, 365-378.	16.8	120

#	Article	IF	Citations
37	Using defined finger–finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Research, 2013, 41, 2455-2465.	14.5	27
38	Obesity Promotes Breast Cancer by CCL2-Mediated Macrophage Recruitment and Angiogenesis. Cancer Research, 2013, 73, 6080-6093.	0.9	220
39	GLI1 regulates a novel neuropilinâ $\mathbf{e}_{\hat{l}}$ integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Molecular Medicine, 2013, 5, 488-508.	6.9	140
40	Human Mammary Epithelial Stem/Progenitor Cells. , 2013, , 235-244.		0
41	Estrogen Promotes ER-Negative Tumor Growth and Angiogenesis through Mobilization of Bone Marrow–Derived Monocytes. Cancer Research, 2012, 72, 2705-2713.	0.9	51
42	Cyclin D1 Activity Regulates Autophagy and Senescence in the Mammary Epithelium. Cancer Research, 2012, 72, 6477-6489.	0.9	62
43	Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Research, 2012, 14, R104.	5.0	87
44	Defining the cellular precursors to human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2772-2777.	7.1	185
45	Stromal biomarkers in breast cancer development and progression. Clinical and Experimental Metastasis, 2012, 29, 663-672.	3.3	32
46	Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell, 2011, 146, 633-644.	28.9	1,334
47	Genetic Predisposition Directs Breast Cancer Phenotype by Dictating Progenitor Cell Fate. Cell Stem Cell, 2011, 8, 149-163.	11.1	327
48	Stem Cell Maintenance of the Mammary Gland: It Takes Two. Cell Stem Cell, 2011, 9, 496-497.	11.1	13
49	Functional Heterogeneity of Breast Fibroblasts Is Defined by a Prostaglandin Secretory Phenotype that Promotes Expansion of Cancer-Stem Like Cells. PLoS ONE, 2011, 6, e24605.	2.5	47
50	Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7950-7955.	7.1	1,024
51	The Tumor Stromal Microenvironment as Modulator of Malignant Behavior. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 377-379.	2.7	10
52	Cyclin D1 Kinase Activity Is Required for the Self-Renewal of Mammary Stem and Progenitor Cells that Are Targets of MMTV-ErbB2 Tumorigenesis. Cancer Cell, 2010, 17, 65-76.	16.8	123
53	Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21737-21742.	7.1	236
54	Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Research, 2010, 12, R87.	5.0	165

#	Article	lF	Citations
55	Stroma in breast development and disease. Seminars in Cell and Developmental Biology, 2010, 21, 11-18.	5.0	113
56	The contribution of dynamic stromal remodeling during mammary development to breast carcinogenesis. Breast Cancer Research, 2010, 12, 205.	5.0	32
57	Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7022-7027.	7.1	51
58	A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer. Cancer Research, 2009, 69, 5364-5373.	0.9	360
59	Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell, 2009, 138, 645-659.	28.9	2,200
60	Distinct roles of the three Akt isoforms in lactogenic differentiation and involution. Journal of Cellular Physiology, 2008, 217, 468-477.	4.1	75
61	Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research, 2008, 10, R25.	5.0	902
62	Endothelial Akt Signaling Is Rate-Limiting for Rapamycin Inhibition of Mouse Mammary Tumor Progression. Cancer Research, 2007, 67, 5070-5075.	0.9	54
63	Alterations of the HBP1 Transcriptional Repressor Are Associated with Invasive Breast Cancer. Cancer Research, 2007, 67, 6136-6145.	0.9	51
64	Systemic Stromal Effects of Estrogen Promote the Growth of Estrogen Receptor–Negative Cancers. Cancer Research, 2007, 67, 2062-2071.	0.9	149
65	Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?. Breast Cancer Research, 2007, 9, 303.	5.0	132
66	Contributions of estrogen to ER-negative breast tumor growth. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 71-78.	2.5	69
67	Reconstruction of human mammary tissues in a mouse model. Nature Protocols, 2006, 1, 206-214.	12.0	131
68	The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genetics, 2005, 37, 1047-1054.	21.4	404
69	Stroma: Tumor Agonist or Antagonist. Cell Cycle, 2005, 4, 1022-1025.	2.6	48
70	A Mouse Model of Human Breast Cancer Metastasis to Human Bone. Cancer Research, 2005, 65, 6130-6138.	0.9	178
71	Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4966-4971.	7.1	704
72	Disease models of breast cancer. Drug Discovery Today: Disease Models, 2004, 1, 9-16.	1.2	12

#	Article	IF	CITATIONS
73	Development of Spontaneous Mammary Tumors in BALB/c p53 Heterozygous Mice. American Journal of Pathology, 2000, 157, 2151-2159.	3.8	178
74	Regulation of p53 and its targets during involution of the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 1999, 4, 177-181.	2.7	15