
Mickael Capron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic processes for the direct synthesis of dimethyl carbonate from CO ₂ and methanol: a review. Green Chemistry, 2022, 24, 1067-1089.	4.6	45
2	Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules, 2022, 27, 3889.	1.7	3
3	TEMPO-Ru-BEA Composite Material for the Selective Oxidation of Alcohols to Aldehydes. ACS Catalysis, 2022, 12, 8925-8935.	5.5	5
4	Catalytic Production of Glycolic Acid from Glycerol Oxidation: An Optimization Using Response Surface Methodology. Catalysts, 2021, 11, 257.	1.6	8
5	Optimisation of catalysts coupling in multi-catalytic hybrid materials: perspectives for the next revolution in catalysis. Green Chemistry, 2021, 23, 1942-1954.	4.6	18
6	Selective Oxidation of Alcohols to Carbonyl Compounds over Small Size Colloidal Ru Nanoparticles. ChemCatChem, 2020, 12, 238-247.	1.8	28
7	Improving the synthesis of Zn-Ta-TUD-1 for the Lebedev process using the Design of Experiments methodology. Applied Catalysis A: General, 2020, 591, 117386.	2.2	13
8	Passing the Frontiers of Liquidâ€Phase Glycerol Partial Oxidation over Supported Bimetallic Catalysts. Advanced Sustainable Systems, 2020, 4, 2000002.	2.7	0
9	Ethanol-to-butadiene: the reaction and its catalysts. Catalysis Science and Technology, 2020, 10, 4860-4911.	2.1	100
10	Properties and activity of Zn–Ta-TUD-1 in the Lebedev process. Green Chemistry, 2020, 22, 2558-2574.	4.6	17
11	External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials, 2019, 286, 57-64.	2.2	44
12	Glycerol to Glyceraldehyde Oxidation Reaction Over Pt-Based Catalysts Under Base-Free Conditions. Frontiers in Chemistry, 2019, 7, 156.	1.8	24
13	Extending Catalyst Life in Glycerol-to-Acrolein Conversion Using Non-thermal Plasma. Frontiers in Chemistry, 2019, 7, 108.	1.8	6
14	Thermoplasmonic-induced energy-efficient catalytic oxidation of glycerol over gold supported catalysts using visible light at ambient temperature. Applied Catalysis A: General, 2019, 572, 9-14.	2.2	10
15	Glycerol Partial Oxidation over Pt/Al ₂ O ₃ Catalysts under Basic and Baseâ€Free Conditions—Effect of the Particle Size. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 63-74.	0.8	7
16	An Alternative to the Cymenes Production from Scrap Tire Rubber Using Heteropolyacid Catalysts. Waste and Biomass Valorization, 2019, 10, 3057-3069.	1.8	13
17	From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future. Catalysis Science and Technology, 2018, 8, 5708-5734.	2.1	46
18	From a Sequential Chemo-Enzymatic Approach to a Continuous Process for HMF Production from Glucose, Catalysts, 2018, 8, 335.	1.6	14

MICKAEL CAPRON

#	Article	IF	CITATIONS
19	Acrolein production from methanol and ethanol mixtures over La- and Ce-doped FeMo catalysts. Applied Catalysis B: Environmental, 2018, 237, 149-157.	10.8	10
20	ZnTa-TUD-1 as an easily prepared, highly efficient catalyst for the selective conversion of ethanol to 1,3-butadiene. Green Chemistry, 2018, 20, 3203-3209.	4.6	39
21	Hybrid Catalysis: A Suitable Concept for the Valorization of Biosourced Saccharides to Valueâ€Added Chemicals. ChemCatChem, 2017, 9, 2080-2084.	1.8	13
22	Development of Silver Based Catalysts Promoted by Noble Metal M (M = Au, Pd or Pt) for Glycerol Oxidation in Liquid Phase. Topics in Catalysis, 2017, 60, 1072-1081.	1.3	23
23	An acrolein production route from ethanol and methanol mixtures over FeMo-based catalysts. Green Chemistry, 2017, 19, 2666-2674.	4.6	13
24	Kinetic modelling of the glycerol oxidation in the liquid phase: comparison of Pt, Au and Ag <scp>AS</scp> active phases. Journal of Chemical Technology and Biotechnology, 2017, 92, 2267-2275.	1.6	9
25	Guerbet Reaction over Strontium‣ubstituted Hydroxyapatite Catalysts Prepared at Various (Ca+Sr)/P Ratios. ChemCatChem, 2017, 9, 2250-2261.	1.8	30
26	Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7. Catalysis Communications, 2017, 89, 14-18.	1.6	17
27	Glycerol Oxidation in the Liquid Phase over a Gold-Supported Catalyst: Kinetic Analysis and Modelling. ChemEngineering, 2017, 1, 7.	1.0	9
28	Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts, 2016, 6, 203.	1.6	100
29	Kinetic modeling of the quasiâ€homogeneous oxidation of glycerol over unsupported gold particles in the liquid phase. European Journal of Lipid Science and Technology, 2016, 118, 72-79.	1.0	14
30	One-pot 1,1-dimethoxymethane synthesis from methanol: a promising pathway over bifunctional catalysts. Catalysis Science and Technology, 2016, 6, 958-970.	2.1	47
31	Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Applied Catalysis A: General, 2016, 518, 78-86.	2.2	55
32	Ethanol reactivity over La1+x FeO3+δ perovskites. Applied Catalysis A: General, 2016, 511, 141-148.	2.2	21
33	Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catalysis Science and Technology, 2016, 6, 5830-5840.	2.1	49
34	Performance of Ag/Al ₂ O ₃ catalysts in the liquid phase oxidation of glycerol – effect of preparation method and reaction conditions. Catalysis Science and Technology, 2016, 6, 3182-3196.	2.1	38
35	Plasmonic enhanced photocatalytic activity of semiconductors for the degradation of organic pollutants under visible light. Materials Science in Semiconductor Processing, 2016, 42, 81-84.	1.9	19
36	Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoO _{<i>x</i>} /TiO ₂ catalysts. Energy Science and Engineering, 2015, 3, 115-125.	1.9	17

MICKAEL CAPRON

#	Article	IF	CITATIONS
37	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.4	29
38	High resolution NMR unraveling Cu substitution of Mg in hydrotalcites–ethanol reactivity. Applied Catalysis A: General, 2015, 504, 533-541.	2.2	14
39	Catalytic behaviour of four different supported noble metals in the crude glycerol oxidation. Applied Catalysis A: General, 2015, 499, 89-100.	2.2	50
40	Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catalysis Science and Technology, 2015, 5, 2994-3006.	2.1	72
41	Novel La ₃ Fe(MoO ₄) ₆ phase: magnetic properties and ethanol reactivity. Dalton Transactions, 2015, 44, 14444-14452.	1.6	3
42	Highly loaded well dispersed stable Ni species in NiXMg2AlOY nanocomposites: Application to hydrogen production from bioethanol. Applied Catalysis B: Environmental, 2015, 166-167, 485-496.	10.8	29
43	Glycerol oxidation over gold supported catalysts – "Two faces―of sulphur based anchoring agent. Journal of Molecular Catalysis A, 2014, 382, 71-78.	4.8	27
44	Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental, 2014, 145, 126-135.	10.8	63
45	Hydrogen production from bioethanol catalyzed by NiXMg2AlOY ex-hydrotalcite catalysts. Applied Catalysis B: Environmental, 2014, 152-153, 370-382.	10.8	46
46	Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. Journal of Materials Chemistry A, 2014, 2, 11073-11090.	5.2	102
47	Crude glycerol as a raw material for the liquid phase oxidation reaction. Applied Catalysis A: General, 2014, 482, 245-257.	2.2	44
48	TiO2-anatase-supported oxorhenate catalysts prepared by oxidative redispersion of metal ReO for methanol conversion to methylal: A multi-technique in situ/operando study. Comptes Rendus Chimie, 2014, 17, 808-817.	0.2	7
49	Porous modified bentonite as efficient and selective catalyst in the synthesis of 1,5-benzodiazepines. Journal of Porous Materials, 2013, 20, 65-73.	1.3	23
50	Al-modified mesoporous silica for efficient conversion of methanol to dimethyl ether. RSC Advances, 2013, 3, 5895.	1.7	8
51	Room Temperature Hydrogen Production from Ethanol over CeNi _{<i>X</i>} H _{<i>Z</i>} O _{<i>Y</i>} Nanoâ€Oxyhydride Catalysts. ChemCatChem, 2013, 5, 2207-2216.	1.8	46
52	Transesterification of Diethyl Oxalate with Phenol over Sol–Gel MoO ₃ /TiO ₂ Catalysts. ChemSusChem, 2012, 5, 1467-1473.	3.6	25
53	Quasiâ€Homogeneous Oxidation of Glycerol by Unsupported Gold Nanoparticles in the Liquid Phase. ChemSusChem, 2012, 5, 2065-2078.	3.6	38
54	Selective oxidation of ethanol towards a highly valuable product over industrial and model catalysts. Biofuels, 2012, 3, 25-34.	1.4	17

MICKAEL CAPRON

#	Article	IF	CITATIONS
55	Ce–Ni mixed oxide as efficient catalyst for H2 production and nanofibrous carbon material from ethanol in the presence of water. RSC Advances, 2012, 2, 9626.	1.7	36
56	Regeneration of Silica‣upported Silicotungstic Acid as a Catalyst for the Dehydration of Glycerol. ChemSusChem, 2012, 5, 1298-1306.	3.6	37
57	Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 2011, 13, 1960.	4.6	468
58	Supported oxorhenate catalysts prepared by thermal spreading of metal ReO for methanol conversion to methylal. Journal of Solid State Chemistry, 2011, 184, 2806-2811.	1.4	19
59	Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM. Journal of Catalysis, 2011, 279, 310-318.	3.1	50
60	Synthesis and characterization of zirconia-grafted SBA-15 nanocomposites. Journal of Materials Chemistry, 2011, 21, 8159.	6.7	9
61	Highly Efficient and Stable CeNiH _{<i>Z</i>} O _{<i>Y</i>} Nanoâ€Oxyhydride Catalyst for H ₂ Production from Ethanol at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 10193-10197.	7.2	47
62	A long-life catalyst for glycerol dehydration to acrolein. Green Chemistry, 2010, 12, 1922.	4.6	108
63	Hydrogen production from ethanol steam reforming over cerium and nickel based oxyhydrides. International Journal of Hydrogen Energy, 2010, 35, 12741-12750.	3.8	37
64	TiO2-supported rhenium oxide catalysts for methanol oxidation: Effect of support texture on the structure and reactivity evidenced by an operando Raman study. Catalysis Today, 2010, 155, 177-183.	2.2	21
65	Hydrogen production from ethanol in presence of water over cerium and nickel mixed oxides. Catalysis Today, 2010, 157, 456-461.	2.2	23
66	SynthÃ [°] se directe du 1,1-diméthoxyméthane à partir de méthanol moyennant une modification mineure du procédé de production de formaldéhyde sur catalyseurs FeMo. Oil and Gas Science and Technology, 2010, 65, 751-762.	1.4	12
67	Al13–[X–Mo/WOn] (X=Al, Co, V, P) composites as catalysts in clean oxidation of aromatic sulfides. Applied Catalysis B: Environmental, 2010, 100, 254-263.	10.8	17
68	Direct conversion of methanol into 1,1-dimethoxymethane: remarkably high productivity over an FeMo catalyst placed under unusual conditions. Green Chemistry, 2010, 12, 1722.	4.6	37
69	Towards the Sustainable Production of Acrolein by Glycerol Dehydration. ChemSusChem, 2009, 2, 719-730.	3.6	221
70	Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catalysis Today, 2009, 141, 385-392.	2.2	89
71	Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane. Chemical Communications, 2008, , 865-867.	2.2	40
72	Dimerization of mono-ruthenium substituted α-Keggin-type tungstosilicate [α-SiW11O39RuIII(H2O)]5â^'to µ-oxo-bridged dimer in aqueous solution: synthesis, structure, and redox studies. Dalton Transactions, 2007, , 2833-2838.	1.6	51

#	Article	IF	CITATIONS
73	Synthesis and Structural Characterization of a New Nanoporous-like Keggin Heteropolyanion Salt: K ₃ (H ₂ O) ₄ [H ₂ SiVW ₁₁ O ₄₀](H <su Inorganic Chemistry, 2007, 46, 7371-7377.</su 	ıb> 2 9/sub:	>O))9ssub>8<∣
74	Synthesis and spectroscopic 27Al NMR and Raman characterization of new materials based on the assembly of isopolycation and Co–Cr and Anderson heteropolyanions. Journal of Molecular Structure, 2007, 841, 96-103.	1.8	15
75	Catalytic oxidation of methanol on Mo/Al2O3 catalyst: An EPR and Raman/infrared operando spectroscopies study. Catalysis Today, 2006, 113, 34-39.	2.2	50
76	Selective oxidation of a pyrimidine thioether using supported tantalum catalysts. Journal of Catalysis, 2005, 235, 184-194.	3.1	19
77	A new experimental cell forin situandoperandoX-ray absorption measurements in heterogeneous catalysis. Journal of Synchrotron Radiation, 2005, 12, 680-684.	1.0	23
78	Crystallisation of spray-dried amorphous precursors in the SrO–Al2O3 system: a DSC study. Journal of the European Ceramic Society, 2003, 23, 2075-2081.	2.8	56
79	Sr4Al14O25: Formation, Stability, and27Al High-Resolution NMR Characterization. Chemistry of Materials, 2003, 15, 575-579.	3.2	33
80	Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 2002, 40, 70-76.	1.1	3,565
81	Synthesis and structural characterisation of Sr3Al10SiO20 by XRD and solid-state NMR. Journal of Solid State Chemistry, 2002, 169, 53-59.	1.4	11
82	Strontium Dialuminate SrAl ₄ O ₇ : Synthesis and Stability. Journal of the American Ceramic Society, 2002, 85, 3036-3040.	1.9	50
83	Local structure and dynamics of high temperature SrO–Al2O3 liquids studied by 27Al NMR and Sr K-edge XAS spectroscopy. Journal of Non-Crystalline Solids, 2001, 293-295, 496-501.	1.5	17
84	Heterogenization of Complexes by Encapsulation in Solid Micelles for Aqueous-Phase Catalysis. Chemistry of Materials, 0, , .	3.2	3
85	Reactive Distillation of Glycolic Acid Using Heterogeneous Catalysts: Experimental Studies and Process Simulation. Frontiers in Chemistry, 0, 10, .	1.8	1