Donald J Siegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395545/publications.pdf Version: 2024-02-01

DONALD | SIECEL

#	Article	IF	CITATIONS
1	Exploring the Synthesis of Alkali Metal Anti-perovskites. Chemistry of Materials, 2022, 34, 947-958.	6.7	13
2	NGenE 2021: Electrochemistry Is Everywhere. ACS Energy Letters, 2022, 7, 368-374.	17.4	6
3	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie - International Edition, 2022, 61, e202203575.	13.8	13
4	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie, 2022, 134, .	2.0	2
5	Ion Migration Mechanisms in the Sodium Sulfide Solid Electrolyte Na _{3–<i>x</i>} Sb _{1–<i>x</i>} W <i>_x</i> S ₄ . Chemistry of Materials, 2022, 34, 4166-4171.	6.7	6
6	Machine learning reveals factors that control ion mobility in anti-perovskite solid electrolytes. Journal of Materials Chemistry A, 2022, 10, 15169-15182.	10.3	5
7	Predicting Charge Transfer Stability between Sulfide Solid Electrolytes and Li Metal Anodes. ACS Energy Letters, 2021, 6, 150-157.	17.4	24
8	Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes. Chemistry of Materials, 2021, 33, 2187-2197.	6.7	9
9	Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2, 100291.	5.9	51
10	Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size. Journal of the American Chemical Society, 2021, 143, 10727-10734.	13.7	95
11	Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry, 2021, 3, 807-818.	8.5	27
12	Anisotropic Elastic Properties of Battery Anodes. Journal of the Electrochemical Society, 2020, 167, 110550.	2.9	8
13	Synthesis of Antiperovskite Solid Electrolytes: Comparing Li ₃ SI, Na ₃ SI, and Ag ₃ SI. Inorganic Chemistry, 2020, 59, 11244-11247.	4.0	16
14	Gas Evolution in Li-Ion Batteries: Modeling Ethylene Carbonate Decomposition on LiCoO ₂ in the Presence of Surface Magnetism. Journal of Physical Chemistry C, 2020, 124, 24097-24104.	3.1	6
15	Dynamics of Hydroxyl Anions Promotes Lithium Ion Conduction in Antiperovskite Li ₂ OHCl. Chemistry of Materials, 2020, 32, 8481-8491.	6.7	53
16	Modeling the Interface between Lithium Metal and Its Native Oxide. ACS Applied Materials & Interfaces, 2020, 12, 46015-46026.	8.0	25
17	Solid‧tate Batteries: Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li ₂ Sâ€P ₂ S ₅ (LPS) Solid Electrolyte for Solid‧tate Li Metal Batteries (Adv. Energy Mater. 19/2020). Advanced Energy Materials, 2020, 10, 2070085.	19.5	1
18	Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12550-12557.	7.1	218

#	Article	IF	CITATIONS
19	Low-temperature paddlewheel effect in glassy solid electrolytes. Nature Communications, 2020, 11, 1483.	12.8	102
20	Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li ₂ Sâ€P ₂ S ₅ (LPS) Solid Electrolyte for Solid‧tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 2000335.	19.5	56
21	Potential Solid Electrolytes for Multivalent-Ions Based on the Anti-Perovskite Structure. ECS Meeting Abstracts, 2020, MA2020-01, 575-575.	0.0	0
22	Tuning Ionic Conductivity in Sodium Anti-Perovskite Ionic Conductors. ECS Meeting Abstracts, 2020, MA2020-02, 945-945.	0.0	0
23	Understanding the Structural Disorder Related to Ionic Conductivity Enhancement in Anti-Perovskite Ion Conductors. ECS Meeting Abstracts, 2020, MA2020-02, 967-967.	0.0	2
24	Temperature-Dependent Atomistic Dynamics Correlated to Cation Transport in Cluster-Ion Anti-Perovskites. ECS Meeting Abstracts, 2020, MA2020-02, 966-966.	0.0	0
25	Charge Transport in Alkali-Metal Superoxides: A Systematic First-Principles Study. Chemistry of Materials, 2019, 31, 9156-9167.	6.7	19
26	Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36607-36615.	8.0	21
27	Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 39940-39950.	8.0	22
28	Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. Journal of Materials Chemistry A, 2019, 7, 3216-3227.	10.3	68
29	Thermodynamic Overpotentials and Nucleation Rates for Electrodeposition on Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 7954-7964.	8.0	44
30	Estimation of system-level hydrogen storage for metal-organic frameworks with high volumetric storage density. International Journal of Hydrogen Energy, 2019, 44, 15135-15145.	7.1	53
31	Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10, 1568.	12.8	278
32	Elucidating the mobility of H ⁺ and Li ⁺ ions in (Li _{6.25â^'x} H _x Al _{0.25})La ₃ Zr ₂ O ₁₂ neutron and electron spectroscopy. Energy and Environmental Science, 2019, 12, 945-951.	i> ∨\$a0x,\$i >C¢	orr ela tive
33	(Invited) Cooperative Ion Migration in Li-Ion Conducting Glasses. ECS Meeting Abstracts, 2019, , .	0.0	0
34	(Invited) Complex Ion Migration Mechanisms in Glassy Lithium Solid Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Atomic-Scale Simulations of Grain Boundary Mechanical Properties in the Solid Electrolyte Li7La3Zr2O12. ECS Meeting Abstracts, 2019, , .	0.0	0
36	Atomic Layer Deposition of Ultrathin Glassy Lithium Borate-Carbonate Solid Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
37	(Invited) Computational Discovery of Metal-Organic Frameworks for Hydrogen Storage: Combining High-Throughput Screening, Machine Learning, and Experimental Demonstration. ECS Meeting Abstracts, 2019, , .	0.0	0
38	Computational Screening of Hydration Reactions for Thermal Energy Storage: New Materials and Design Rules. Chemistry of Materials, 2018, 30, 2006-2017.	6.7	45
39	Adiabatic and Nonadiabatic Charge Transport in Li–S Batteries. Chemistry of Materials, 2018, 30, 915-928.	6.7	30
40	Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. lonics, 2018, 24, 1271-1276.	2.4	136
41	Reaction Pathways for Solvent Decomposition on Magnesium Anodes. Journal of Physical Chemistry C, 2018, 122, 10714-10724.	3.1	28
42	Atomic layer deposition and first principles modeling of glassy Li ₃ BO ₃ –Li ₂ CO ₃ electrolytes for solid-state Li metal batteries. Journal of Materials Chemistry A, 2018, 6, 19425-19437.	10.3	48
43	Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 38151-38158.	8.0	132
44	An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy and Environmental Science, 2018, 11, 2784-2812.	30.8	162
45	(Invited) Stability and Kinetics of the Li/Solid-State Electrolyte Interface. ECS Meeting Abstracts, 2018, ,	0.0	0
46	(Invited) Tuning Ion Mobility in Solid Electrolytes Via Lattice Disorder. ECS Meeting Abstracts, 2018, , .	0.0	0
47	Adiabatic and Nonadiabatic Charge Transport in Li-S Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
48	(Invited) Atomic Scale Simulations of Interfacial Phenomena in Solid Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
49	Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12. ECS Meeting Abstracts, 2018, , .	0.0	0
50	Tuning the Adsorption of Polysulfides(Li2Sx) in Lithium-Sulfur Batteries with Metal-Organic Frameworks(MOFs). ECS Meeting Abstracts, 2018, , .	0.0	0
51	First-Principles Models of Phenomena at Li-Metal/Anti-Perovskite Li3ocl Solid Electrolyte Interfaces. ECS Meeting Abstracts, 2018, , .	0.0	0
52	Atomic Layer Deposition of Ultrathin Lithium Borate Solid Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
53	Maximizing Ionic Mobility By Lattice Disorder in Anti-Perovskite Solid Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
54	Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
55	Electrochemical Window of the Li-Ion Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Energy Letters, 2017, 2, 462-468.	17.4	255
56	Intrinsic Conductivity in Magnesium–Oxygen Battery Discharge Products: MgO and MgO ₂ . Chemistry of Materials, 2017, 29, 3152-3163.	6.7	46
57	Tuning the Adsorption of Polysulfides in Lithium–Sulfur Batteries with Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 4932-4939.	6.7	98
58	lmpact of air exposure and surface chemistry on Li–Li ₇ La ₃ Zr ₂ O ₁₂ interfacial resistance. Journal of Materials Chemistry A, 2017, 5, 13475-13487.	10.3	300
59	Balancing gravimetric and volumetric hydrogen density in MOFs. Energy and Environmental Science, 2017, 10, 2459-2471.	30.8	127
60	Lithium–oxygen batteries: At a crossroads?. Current Opinion in Electrochemistry, 2017, 6, 100-107.	4.8	28
61	Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO). Chemistry of Materials, 2017, 29, 9639-9647.	6.7	189
62	Water Adsorption and Insertion in MOF-5. ACS Omega, 2017, 2, 4921-4928.	3.5	59
63	Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ . Chemistry of Materials, 2017, 29, 7961-7968.	6.7	612
64	lon Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride. ACS Applied Materials & Interfaces, 2017, 9, 43755-43766.	8.0	34
65	Computational Model of Magnesium Deposition and Dissolution for Property Determination via Cyclic Voltammetry. Journal of the Electrochemical Society, 2016, 163, A1813-A1821.	2.9	21
66	Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities. International Journal of Hydrogen Energy, 2016, 41, 9374-9382.	7.1	15
67	Mg/O ₂ Battery Based on the Magnesium–Aluminum Chloride Complex (MACC) Electrolyte. Chemistry of Materials, 2016, 28, 7629-7637.	6.7	25
68	Theoretical Limiting Potentials in Mg/O ₂ Batteries. Chemistry of Materials, 2016, 28, 1390-1401.	6.7	42
69	Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries. Journal of Physical Chemistry Letters, 2016, 7, 874-881.	4.6	39
70	Elastic Properties of the Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO). Chemistry of Materials, 2016, 28, 197-206.	6.7	445
71	Correlating Li/O ₂ Cell Capacity and Product Morphology with Discharge Current. ACS Applied Materials & amp; Interfaces, 2015, 7, 7670-7678.	8.0	66
72	Predicting Methane Storage in Open-Metal-Site Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 13451-13458.	3.1	62

#	Article	IF	CITATIONS
73	Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide. Chemistry of Materials, 2015, 27, 3852-3860.	6.7	73
74	Identifying the Discharge Product and Reaction Pathway for a Secondary Mg/O ₂ Battery. Chemistry of Materials, 2015, 27, 7564-7568.	6.7	57
75	How Dopants Can Enhance Charge Transport in Li ₂ O ₂ . Chemistry of Materials, 2015, 27, 839-847.	6.7	79
76	First-Principles Study of Redox End Members in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 4675-4683.	3.1	65
77	Anisotropic thermal transport in MOF-5 composites. International Journal of Heat and Mass Transfer, 2015, 82, 250-258.	4.8	26
78	Kinetic Stability of MOF-5 in Humid Environments: Impact of Powder Densification, Humidity Level, and Exposure Time. Langmuir, 2015, 31, 4988-4995.	3.5	88
79	Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future. Green Energy and Technology, 2015, , 511-539.	0.6	11
80	Impact of Space-Charge Layers on Sudden Death in Li/O ₂ Batteries. Journal of Physical Chemistry Letters, 2015, 6, 3017-3022.	4.6	53
81	Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations. Journal of Physical Chemistry C, 2015, 119, 9050-9060.	3.1	36
82	Crystal Surface and State of Charge Dependencies of Electrolyte Decomposition on LiMn ₂ O ₄ Cathode. Journal of the Electrochemical Society, 2014, 161, E3059-E3065.	2.9	63
83	Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling. Journal of Power Sources, 2014, 251, 8-13.	7.8	30
84	Methane Storage in Metal-Substituted Metal–Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites. Journal of Physical Chemistry C, 2014, 118, 2929-2942.	3.1	43
85	Thermophysical properties of MOF-5 powders. Microporous and Mesoporous Materials, 2014, 185, 235-244.	4.4	67
86	Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18033-18039.	8.0	96
87	Enhanced Charge Transport in Amorphous Li ₂ O ₂ . Chemistry of Materials, 2014, 26, 2952-2959.	6.7	202
88	Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Materialia, 2014, 75, 322-336.	7.9	83
89	Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries. Energy and Environmental Science, 2013, 6, 2370.	30.8	293
90	Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs. Chemistry of Materials, 2013, 25, 3373-3382.	6.7	211

#	Article	IF	CITATIONS
91	Thermodynamic screening of metal-substituted MOFs for carbon capture. Physical Chemistry Chemical Physics, 2013, 15, 4573.	2.8	62
92	Sustainable Mobility, Future Fuels, and the Periodic Table. Journal of Chemical Education, 2013, 90, 440-445.	2.3	17
93	Hydrogen permeation and diffusion in densified MOF-5 pellets. International Journal of Hydrogen Energy, 2013, 38, 3268-3274.	7.1	30
94	Electronic structure of Li2O2 {0001} surfaces. Journal of Materials Science, 2012, 47, 7564-7570.	3.7	82
95	Increased volumetric hydrogen uptake of MOF-5 by powder densification. International Journal of Hydrogen Energy, 2012, 37, 2723-2727.	7.1	127
96	Improved Hydrogen Storage and Thermal Conductivity in High-Density MOF-5 Composites. Journal of Physical Chemistry C, 2012, 116, 20199-20212.	3.1	117
97	Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not. Journal of the American Chemical Society, 2012, 134, 1093-1103.	13.7	331
98	Comparing van der Waals Density Functionals for CO ₂ Adsorption in Metal Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 16957-16968.	3.1	72
99	MOF-5 composites exhibiting improved thermal conductivity. International Journal of Hydrogen Energy, 2012, 37, 6109-6117.	7.1	130
100	Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Materialia, 2011, 59, 6187-6204.	7.9	206
101	High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 2010, 39, 656-675.	38.1	1,008
102	Simultaneous Segregation at Coherent and Semicoherent Heterophase Interfaces. Physical Review Letters, 2010, 105, 076102.	7.8	80
103	Education on vehicle electrification: Battery Systems, Fuel Cells, and Hydrogen. , 2010, , .		8
104	Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH ₂ â~'LiBH ₄ â^'MgH ₂ Ternary Composites. Journal of Physical Chemistry C, 2009, 113, 2004-2013.	3.1	20
105	A Self atalyzing Hydrogenâ€Storage Material. Angewandte Chemie - International Edition, 2008, 47, 882-887.	13.8	120
106	Discovery of novel hydrogen storage materials: an atomic scale computational approach. Journal of Physics Condensed Matter, 2008, 20, 064228.	1.8	75
107	Reaction energetics and crystal structure ofLi4BN3H10from first principles. Physical Review B, 2007, 75, .	3.2	70
108	Hydrogen storage properties of 2LiNH2+LiBH4+MgH2. Journal of Alloys and Compounds, 2007, 446-447, 345-349.	5.5	44

#	Article	IF	CITATIONS
109	High throughput screening of the ternary LiNH2–MgH2–LiBH4 phase diagram. Journal of Alloys and Compounds, 2007, 446-447, 355-359.	5.5	42
110	Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Physical Review B, 2007, 76, .	3.2	127
111	Computational study of carbon segregation and diffusion within a nickel grain boundary. Acta Materialia, 2005, 53, 87-96.	7.9	36
112	Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Applied Physics Letters, 2005, 87, 121901.	3.3	167
113	Understanding the Magnetocatalytic Effect: Magnetism as a Driving Force for Surface Segregation. Physical Review Letters, 2004, 92, 086101.	7.8	13
114	Ab initiostudy of Al-ceramic interfacial adhesion. Physical Review B, 2003, 67, .	3.2	127
115	First-principles study of the solubility, diffusion, and clustering of C in Ni. Physical Review B, 2003, 68, ·	3.2	71
116	Why Do Grain Boundaries Exhibit Finite Facet Lengths?. Physical Review Letters, 2003, 90, 246102.	7.8	34
117	Embedded-atom-method tantalum potential developed by the force-matching method. Physical Review B, 2003, 67, .	3.2	93
118	Adhesion, atomic structure, and bonding at theAl(111)/뱉^Al2O3(0001)interface: A first principles study. Physical Review B, 2002, 65, .	3.2	212
119	Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC. Surface Science, 2002, 498, 321-336.	1.9	224
120	First-principles study of metal–carbide/nitride adhesion: Al/VC vs. Al/VN. Acta Materialia, 2002, 50, 619-631.	7.9	127
121	Investigation of vinyl phosphonic acid/hydroxylated α-Al2O3() reaction enthalpies. Surface Science, 2001, 494, 1-20.	1.9	48
122	Stoichiometry and Adhesion of Al/WC. Materials Research Society Symposia Proceedings, 2001, 677, 4251.	0.1	1
123	Adhesion, lubrication and wear on the atomic scale. Surface and Interface Analysis, 2001, 31, 619-626.	1.8	46
124	Development of glue-type potentials for the Al–Pb system: phase diagram calculation. Acta Materialia, 2000, 48, 1753-1761.	7.9	77
125	Electronic Structure and Bonding at the Al-terminated Al(111)/α-Al ₂ O ₃ (0001) Interface: A First Principles Study. Materials Research Society Symposia Proceedings, 2000, 654, 421.	0.1	5
126	Predicting Hydrogen Storage in Mofs <i>via</i> Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1